已知数列{an}的通项公式是an=2n-3()n,则其前20项和为( )
A.380-![]() ![]() |
B.400-![]() ![]() |
C.420-![]() ![]() |
D.440-![]() ![]() |
已知{an}是各项均为正数的等比数列,且a1+a2=2(+
),a3+a4+a5=64(
+
+
),
(1)求{an}的通项公式.
(2)设bn=(an+)2,求数列{bn}的前n项和Tn.
已知二次函数f(x)=px2+qx(p≠0),其导函数为f'(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式.
(2)若cn=(an+2),2b1+22b2+23b3+…+2nbn=cn,求数列{bn}的通项公式.
定义:F(x,y)=yx(x>0,y>0),已知数列{an}满足:an=(n∈N*),若对任意正整数n,都有an≥ak(k∈N*)成立,则ak的值为( )
A.![]() |
B.2 | C.3 | D.4 |
设两数列{an}和{bn},an=,bn=
,则数列
的前n项的和为( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知数列{an},如果数列{bn}满足b1=a1,bn=an+an-1,n≥2,n∈N*,则称数列{bn}是数列{an}的“生成数列”.
(1)若数列{an}的通项为an=n,写出数列{an}的“生成数列”{bn}的通项公式;
(2)若数列{cn}的通项为cn=2n+b(其中b是常数),试问数列{cn}的“生成数列”{qn}是否是等差数列,请说明理由;
(3)已知数列{dn}的通项为dn=2n+n,求数列{dn}的“生成数列”{pn}的前n项和Tn.
设正项数列{an}的前n项和为Sn,若{an}和{}都是等差数列,且公差相等.
(1)求{an}的通项公式;
(2)若a1,a2,a5恰为等比数列{bn}的前三项,记数列cn=,数列{cn}的前n项和为Tn.求证:对任意n∈N*,都有Tn<2.
已知向量p=(an,2n),向量q=(2n+1,-an+1),n∈N*,向量p与q垂直,且a1=1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.
对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,{an}的“差数列”的通项为2n,则数列{an}的前n项和Sn=________.
已知曲线C:y= (x>0)及两点A1(x1,0)和A2(x2,0),其中x2>x1>0.过A1,A2分别作x轴的垂线,交曲线C于B1,B2两点,直线B1B2与x轴交于点A3(x3,0),那么( )
A.x1,![]() |
B.x1,![]() |
C.x1,x3,x2成等差数列 | D.x1,x3,x2成等比数列 |
已知数列{an}的前n项和为Sn,且满足Sn=n2,数列{bn}满足bn=,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式an和Tn;
(2)若对任意的n∈N*,不等式λTn<n+(-1)n恒成立,求实数λ的取值范围.
已知等差数列{an}满足:a2=5,a4+a6=22,数列{bn}满足b1+2b2+…+2n-1bn=nan,设数列{bn}的前n项和为Sn.
(1)求数列{an},{bn}的通项公式;
(2)求满足13<Sn<14的n的集合.
已知数列{an}的前n项和是Sn,且Sn+an=1.
(1)求数列{an}的通项公式;
(2)记bn=log3,数列
的前n项和为Tn,证明:Tn<
.
已知数列的前n项和
(1)求数列的通项公式,并证明
是等差数列;
(2)若,求数列
的前
项和
数列是公差不为零的等差数列,并且
是等比数列
的相邻三项,若
,则
等于( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |