掷两颗骰子,所得点数之和为,那么=4表示的随机试验结果是( )
A.一颗是3点,一颗是1点 | B.两颗都是2点 |
C.两颗都是4点 | D.一颗是3点,一颗是1点或两颗都是2点 |
甲、乙两队在进行一场五局三胜制的排球比赛中,规定先赢三局的队获胜,并且比赛就此结束,现已知甲、乙两队每比赛一局,甲队获胜的概率为,乙队获胜的概率为,且每局比赛的胜负是相互独立的,问:
(1)甲队以获胜的概率是多少?
(2)乙队获胜的概率是多少?
某种产品按质量标准分成五个等级,等级编号依次为1,2,3,4,5.现从一批产品中随机抽取20件,对其等级编号进行统计分析,得到频率分布表如下:
等级 |
1 |
2 |
3 |
4 |
5 |
频率 |
a |
0.2 |
0.45 |
b |
c |
(1)若所抽取的20件产品中,等级编号为4的恰有3件,等级编号为5的恰有2件,求a,b,c的值;
(2)在(1)的条件下,将等级编号为4的3件产品记为xl,x2,x3,等级编号为5的2件产品记为yl ,y2,现从xl,x2,x3,yl,y2这5件产品中任取两件(假定每件产品被取出的可能性相同),写出所有可能的结果,并求这两件品的级编号恰好相同的概率。
将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在
下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是.
(Ⅰ)求小球落入袋中的概率;
(Ⅱ)在容器入口处依次放入4个小球,记为落入袋中的小球个数,试求的概率和的数学期望.
2011年4月28日世界园艺博览会将在陕西西安浐灞生态区举行,为了接待来自国内外的各界人士,需招募一批志愿者,要求志愿者不仅要有一定的气质,还需有丰富的人文、地理、历史等文化知识。志愿者的选拔分面试和知识问答两场,先是面试,面试通过后每人积60分,然后进入知识问答。知识问答有A,B,C,D四个题目,答题者必须按A,B,C,D顺序依次进行,答对A,B,C,D四题分别得20分、20分、40分、60分,每答错一道题扣20分,总得分在面试60分的基础上加或减。答题时每人总分达到100分或100分以上,直接录用不再继续答题;当四道题答完总分不足100分时不予录用。
假设志愿者甲面试已通过且第二轮对A,B,C,D四个题回答正确的概率依次是,且各题回答正确与否相互之间没有影响.
(Ⅰ) 用X表示志愿者甲在知识问答结束时答题的个数,求X的分布列和数学期望;
(Ⅱ)求志愿者甲能被录用的概率.
袋子里有大小相同但标有不同号码的3个红球和4个黑球,从袋子里随机取出4个球.
⑴求取出的红球数的概率分布列;
⑵若取到每个红球得2分,取到每个黑球得1分,求得分不超过5分的概率.
甲、乙、丙3人投篮,投进的概率分别是, , .(Ⅰ)现3人各投篮1次,求3人都没有投进的概率;(Ⅱ)用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望Eξ
某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的均值为( )
A.100 | B.200 | C.300 | D.400 |
口袋内装有100个大小相同的红球、白球和黑球,其中有45个红球;从中摸出1个球,若摸出白球的概率为0.23,则摸出黑球的概率为____________.
甲、乙、丙三人在同一办公室工作,办公室只有一部电话机,给该机打进的电话是打给甲、乙、丙的概率分别是,在一段时间内该电话机共打进三个电话,且各个电话之间相互独立,则这三个电话中恰有两个是打给乙的概率是 (用分数作答)