高中数学
代数
集合
集合的概念与表示
集合的基本关系
集合的基本运算
集合的划分
常用逻辑用语
命题及其关系
充分条件、必要条件、充要条件
逻辑联结词“或”、“且”、“非”
全称量词与存在量词
函数
函数的概念
函数的基本性质
一次函数的性质与图象
二次函数的性质与图象
基本初等函数
指数函数
对数函数
幂函数
函数的应用
函数的零点与方程的根
函数与方程的综合运用
函数模型及其应用
导数及其应用
导数的概念及其意义
导数的运算
定积分、微积分
导数在研究函数中的应用
不等式
不等关系与不等式
一元二次不等式
二元一次不等式
基本不等式及其应用
其他不等式
数列与差分
数列的概念及表示法
等差数列
等比数列
数列综合
数列差分
平面向量
向量的概念
平面向量的线性运算
平面向量的基本定理
平面向量的坐标
平面向量的数量积
平面向量的应用
数系的扩充与复数
复数的概念
复数的运算
复数的模
三角函数
任意角和弧度制
三角函数的概念
三角函数的性质
诱导公式
同角三角函数间的基本关系
三角函数的恒等变换
正弦函数
余弦函数
正切函数
复合三角函数
三角函数的应用
解三角形
概率与统计
统计与统计案例
随机抽样
统计图表
用样本估计总体
变量间的相关关系
一元线性回归模型及其应用
独立性检验
概率
随机事件
概率及其性质
独立事件与条件概率
离散型随机变量及其分布列
连续型随机变量
正态分布曲线
概率综合
计数原理
分类加法,分步乘法
计数原理的应用
排列与组合
二项式定理
推理与证明
推理与证明
合情推理和演绎推理
平面解析几何
直线与方程
直线的几何要素
直线的方程
直线方程的应用
圆与方程
圆的方程
圆的方程的应用
空间直角坐标系
圆锥曲线与方程
椭圆
抛物线
双曲线
圆锥曲线综合
立体几何
空间几何体
立体图形的表面积与体积
立体图形的结构特征
立体图形的直观图
基本事实、公理
直线与直线的位置关系
直线与平面的位置关系
平面与平面的位置关系
空间向量与立体几何
空间向量及其运算
空间向量基本定理及坐标表示
空间向量的应用
知识延伸(选修)
算法与框图
算法及其特点
框图及其结构
几何证明选讲
三角形
圆与球的性质
圆锥曲线
矩阵与变换
线性变换与二阶矩阵
复合变换与二阶矩阵的乘法
逆变换与逆矩阵
高阶矩阵与特征向量
坐标系与参数方程
坐标系
参数方程
不等式选讲
绝对值不等式
不等式的证明
柯西不等式与排序不等式
用数学归纳法证明不等式
初等数论初步
二元一次不定方程的特解
误差估计
平行线法
正交试验设计方法
原根与指数
mod的原根存在性
二次剩余
不定方程和方程组
欧拉定理
数学史选讲
平面解析几何的产生──数与形的结合
微积分的产生──划时代的成就
随机思想的发展
代数拓展
三角不等式
一阶、二阶线性常系数递归数列的通项公式
第二数学归纳法
柯西不等式
排序不等式及应用
多项式的插值公式
函数迭代
几何拓展
西姆松定理
几何不等式
几何中的变换:对称、平移、旋转
面积、复数、向量、解析几何方法的应用
平面凸集、凸包及应用
简单的等周问题
直线束及其应用
三角形的面积公式
多面角及多面角的性质
三面角、直三面角的基本性质
截面及其作法
表面展开图
组合几何

一个口袋中装有个红球()和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.
(Ⅰ)试用表示一次摸奖中奖的概率
(Ⅱ)若,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;
(Ⅲ)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为.当取多少时,最大?

来源:2009——2010随机变量专题训练
  • 更新:2020-03-18
  • 题型:解答题
  • 难度:容易

(新华网)反兴奋剂的大敌、服药者的宠儿——HGH(人体生长激素),有望在2008年8月的北京奥运会上首次“伏法”。据悉,国际体育界研究近10年仍不见显著成效的HGH检测,日前已取得新的进展,新生产的检测设备有希望在北京奥运会上使用.若组委会计划对参加某项比赛的12名运动员的血样进行突击检查,采用如下化验方法:将所有待检运动员分成若干小组,每组m个人,再把每个人的血样分成两份,化验时将每个小组内的m个人的血样各一份混合在一起进行化验,若结果中不含HGH成分,那么该组的m个人只需化验这一次就算检验合格;如果结果中含有HGH成分,那么需要对该组进行再次检验,即需要把这m个人的另一份血样逐个进行化验,才能最终确定是否检验合格,这时,对这m个人一共需要进行m+1次化验.假定对所有人来说,化验结果中含有HGH成分的概率均为 .当m=3时,求:
(1)一个小组只需经过一次检验就合格的概率;
(2)至少有两个小组只需经过一次检验就合格的概率(精确到0.01.参考数据:0.2713≈0.020,0.2714≈0.005,0.7292≈0.500)

来源:2009——2010随机变量专题训练
  • 更新:2020-03-18
  • 题型:解答题
  • 难度:容易

某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?

来源:2009——2010随机变量专题训练
  • 更新:2020-03-18
  • 题型:解答题
  • 难度:容易

甲投篮命中率为O.8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?

来源:2009——2010随机变量专题训练
  • 更新:2020-03-18
  • 题型:解答题
  • 难度:容易

设一次试验成功的概率为p,现进行16次独立重复试验.当p=__________时,成功次数的标准差最大,其最大值为__________.

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:容易

某家具制造商购买的每10块板中平均有1块是不能用于做家具的,一组5块这样的板中有3块或4块可用的概率约为(     )

A.0.40 B.0.3 C.0.07 D.0.2
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:容易

某气象站天气预报的准确率为,计算(结果保留到小数点后面第2位)
(1)5次预报中恰有2次准确的概率;
(2)5次预报中至少有2次准确的概率;
(3)5次预报中恰有2次准确,且其中第次预报准确的概率

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:容易

一份航空意外伤害保险保险费为20元,保险金额为45万元.如果某城市的一家保险公司一年能销售这种保单10万份,所需成本为5万元,而需要赔付的概率为.那么请问1年内赔付人数为多少时,这家保险公司会亏本?

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:容易

在未来3天中,某气象台预报天气的准确率为0.8,则在未来3天中,至少连续2 天预报准确的概率是            .

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:容易

如果η~B(15,)则使P(η=k)最大的k是(    )

A.3 B.4   C.5 D.3 或4
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:容易

一台X型号自动机床在一小时内不需要工人照看的概率为0.8,有四台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是 (      )

A.0.1536 B.0.1808 C.0.5632 D.0.9728
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:容易

独立重复试验中,某事件恰好发生k次的概率公式为,它与的展开式中第  项系数及其类似,此时a=   ,b=   ,x=   .

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:容易

在某次试验中事件A出现的概率为P,则在n次独立重复试验中出现k次的概率为(  )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:容易

10.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则Pξ=12)等于

A.C10·(2 B.C92·
C.C9·(2 D.C9·(2
来源:随机变量及其分布单元检测
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:容易

设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是(      )

A.Eξ="0.1" B.Dξ="0.1"
C.P(ξ=k)=0.01k·0.9910-k D.P(ξ=k)=C·0.99k·0.0110-k
来源:随机变量及其分布单元检测
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:容易

高中数学正交试验设计方法试题