一个口袋中装有个红球(且)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.(Ⅰ)试用表示一次摸奖中奖的概率;(Ⅱ)若,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;(Ⅲ)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为.当取多少时,最大?
双曲线C:="1" (a>0,b>0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使·=0,求此双曲线离心率的取值范围.
与双曲线=1有共同的渐近线,且过点(-3,2);求双曲线的标准方程.
已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程.
已知椭圆=1(a>b>0)的离心率为,直线y=x+1与椭圆相交于A、B两点,点M在椭圆上,=+,求椭圆的方程.
已知椭圆的中心在原点,离心率为,一个焦点是F(-m,0)(m是大于0的常数). (1)求椭圆的方程; (2)设Q是椭圆上的一点,且过点F、Q的直线l与y轴交于点M,若||=2||,求直线l的斜率.