已知函数,.(Ⅰ)若,且,求的值;(Ⅱ)若,求的最大值.
在一个特定时段内, 以点 E 为中心的7海里以内海域被设为警戒水域.点 E 正北55海里处有一个 雷达观测站 A .某时刻测得一艘匀速直线行驶的船只位于点 A 北偏东 45 ∘ 且与点 A 相距 40 2 海里的位置 B ,经过40分钟又测得该船已行驶到点 A 北偏东 45 ∘ + θ (其中 sin θ = 26 26 , 0 ∘ < θ < 90 ∘ )且与点 A 相距 10 13 海里的位置C.
(Ⅰ)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
数列 a n 满足 a 1 = 1 , a 2 = 2 , a n + 2 = 1 + cos 2 nπ 2 a n + sin 2 nπ 2 , n = 1 , 2 , 3 , … … .
(Ⅰ) 求 a 3 , a 4 , 并求数列 a n 的通项公式;
(II) 设 b n = a 2 n - 1 a 2 n , S n = b 1 + b 2 + … … + b n . 证明: 当 n ≥ 6 时 , S n - 2 < 1 n .
如图所示,四棱锥 P - ABCD 的底面 ABCD 是边长为 1 的菱形, ∠ BCD = 60 ∘ , E 是 CD 的中点, PA ⊥ 底面 ABCD , PA = 2 .
(I) 证明: 平面 PBE ⊥ 平面 PAB ;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是 1 2 , 且面试是否合格互不影响.
求: ( I ) 至少有 1 人面试合格的概率;
( II ) 签约人数 ξ 的分布列和数学期望.
(1) 求 7 C 6 3 - 4 C 7 4 的值;
(2) 设 m , n ∈ N * , n ⩾ m , 求证:
( m + 1 ) C m m + ( m + 2 ) C m + 1 m + ( m + 3 ) C m + 2 m + ⋯ + n C n - 1 m + ( n + 1 ) C n m = ( m + 1 ) C n + 2 m + 2