高中数学

下列四个正方体图形中,为正方体的两个顶点,分别为其所在棱的中点,能得出平面的图形的序号是     .(将你认为正确的都填上)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为不重合的两个平面,给出下列命题:
(1)若内的两条相交直线分别平行于内的两条直线,则平行于
(2)若外一条直线内的一条直线平行,则平行;
(3)设相交于直线,若内有一条直线垂直于,则垂直;
(4)直线垂直的充分必要条件是内的两条直线垂直.
上面命题中,真命题的序号            (写出所有真命题的序号).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知直线l⊥平面α,直线m平面β,有下列四个命题:①若α∥β,则l⊥m ;②若α⊥β,则l∥m;③若l∥m,则α⊥β;④若l⊥m,则α∥β.其中正确命题序号是      

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

下列各图中,为正方体的两个顶点,分别为其所在棱的中点,能得出//平面的图形的序号是         

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

是直线上的两点,,且直线与直线的角,则两点间的距离是_______.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为不重合的两个平面,给出下列命题:
(1)若内的两条相交直线分别平行于内的两条直线,则平行于
(2)若外一条直线内的一条直线平行,则平行;
(3)设相交于直线,若内有一条直线垂直于,则垂直;
(4)直线垂直的充分必要条件是内的两条直线垂直.
上面命题中,真命题的序号           (写出所有真命题的序号).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:

①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正确的有__________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

下列各图是正方体或三棱锥,分别是所在棱的中点,这四个点不共面的图象共有                   (填写序号)

①              ②                  ③                   ④

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:

①PA∥平面MOB;
②MO∥平面PAC;
③OC⊥平面PAC;
④平面PAC⊥平面PBC.
其中正确的命题是     (填上所有正确命题的序号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设m,n是两条不同的直线,α、β、γ是三个不同的平面,给出下列四个命题:
(1)若m⊥α,n∥α,则m⊥n
(2)若α∥β,β∥γ,m⊥α,则m⊥γ
(3)若m∥α,n∥α,则m∥n
(4)若α⊥γ,β⊥γ,则α∥β
其中真命题的序号是          

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

下图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知

(1)设点的中点,证明:平面
(2)求与平面所成的角的正弦值;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,是棱长为的正方体,分别是下底面的棱的中点,是上底面的棱上的一点,,过的平面交上底面于上,则=__________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

是三个不同的平面,是三条不同的直线,则的一个充分条件为       
;     

;    

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知正四棱锥可绕着任意旋转,平面,若,则正四棱锥在面内的投影面积的取值范围是________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图是一正方体的表面展开图,B、N、Q都是所在棱的中点,则在原正方体中,①AB与CD相交;②MN∥PQ;③AB∥PE;④MN与CD异面;⑤MN∥平面PQC.
其中真命题的是________(填序号).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学平行线法填空题