如图,长方体中,是边长为的正方形,与平面所成的角为,则棱的长为_______;二面角的大小为_______.
已知平面α,β,直线.给出下列命题:
① 若,,则;
② 若,,则;
③ 若,则;
④ 若,,则.
其中是真命题的是 .(填写所有真命题的序号).
在四面体ABCD中,有如下结论:
①若,则;
②若分别是的中点,则的大小等于异面直线与所成角的大小;
③若点是四面体外接球的球心,则在面上的射影为的外心;
④若四个面是全等的三角形,则为正四面体.
其中所有正确结论的序号是 .
设l,m是不同的直线,α,β,γ是不同的平面,则下列命题正确的是______________.
①若l⊥m,m⊥α,则l⊥α或 l∥α
②若l⊥γ,α⊥γ,则l∥α或 lα
③若l∥α,m∥α,则l∥m或 l与m相交
④若l∥α,α⊥β,则l⊥β或lβ
已知是三条不同的直线,是三个不同的平面,下列命题:
①若,,则; ②若,,则;
③若,,,则; ④若,则.
其中真命题是_ __.(写出所有真命题的序号).
如图,在三棱柱中,四边形是边长为4的正方形,平面⊥平面,.
(Ⅰ)求证:⊥平面;
(Ⅱ)若点是线段的中点,请问在线段是否存在点,使得面?若存在,请说明点的位置,若不存在,请说明理由;
(Ⅲ)(本小问只理科学生做)求二面角的大小.
设m,n是两条不同的直线,,,是三个不同的平面,给出下列命题:
①若,,则;
②若,,则;
③若,,则;
④若,,,则.
上面命题中,真命题的序号是 (写出所有真命题的序号).
如图所示,为正方体,给出以下五个结论:
①平面;
②⊥平面;
③与底面所成角的正切值是;
④二面角的正切值是;
⑤过点且与异面直线 和 均成70°角的直线有2条.
其中,所有正确结论的序号为________.
下图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知,,,.
(1)设点是的中点,证明:平面;
(2)求与平面所成的角的正弦值;
设、、是三个不同的平面,、、是三条不同的直线,则的一个充分条件为 .
①;
②;
③;
④.
已知正四棱锥可绕着任意旋转,平面,若,,则正四棱锥在面内的投影面积的取值范围是________.
如图是一正方体的表面展开图,B、N、Q都是所在棱的中点,则在原正方体中,①AB与CD相交;②MN∥PQ;③AB∥PE;④MN与CD异面;⑤MN∥平面PQC.
其中真命题的是________(填序号).