下图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知,,,.(1)设点是的中点,证明:平面;(2)求与平面所成的角的正弦值;
若双曲线=1(a>0,b>0)的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成7∶3的两段,则此双曲线的离心率为________.
设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.
已知椭圆C:=1(a>b>0)的离心率为,与过右焦点F且斜率为k(k>0)的直线相交于A、B两点.若=3,则k=________.
已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A、B两点,且AB的中点为N(-12,-15),则E的方程为____________.
若斜率为的直线l与椭圆=1(a>b>0)有两个不同的交点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为________.