高中数学

(本小题满分14分)

为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:
(1)填充频率分布表的空格(将答案直接填在表格内);
(2)补全频数条形图;
(3)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分
布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。

(1)求居民月收入在的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中用
分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某种家用电器每台的销售利润与该电器的无故障使用时间T (单位:年)有关.若T≤1,则销售利润为0元;若1<T≤3,则销售利润为100元;若T>3,则销售利润为200元.设每台该种电器的无故障使用时间T≤1,1<T≤3及T>3这三种情况发生的概率分别为p1,p2,p3,又知p1,p2是方程的两个根,且p2=p3
(1)求p1,p2,p3的值;
(2)记表示销售两台这种家用电器的销售利润总和,求的期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率分布条形图如下:

若将频率视为概率,回答下列问题.(Ⅰ)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率; (Ⅱ)若甲、乙两运动员各自射击1次,ξ表示这2次射击中击中9环以上(含9环)的次数,求ξ的分布列及

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为 2 3 1 2 ,且各株大树是否成活互不影响.求移栽的4株大树中:
(Ⅰ)两种大树各成活1株的概率;
(Ⅱ)成活的株数 ξ 的分布列与期望.

来源:09高考数学概率统计
  • 更新:2022-06-21
  • 题型:未知
  • 难度:未知

高中数学误差估计解答题