潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。(1)求居民月收入在的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中用分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?
设分别是椭圆的 左,右焦点。 (1)若P是该椭圆上一个动点,求的 最大值和最小值。 (2)设过定点M(0,2)的 直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l斜率k的取值范围。
已知函数f(x)=ex+2x2—3x (1)求曲线y=f(x)在点(1,f(1))处的切线方程; (2) 当x ≥1时,若关于x的不等式f(x)≥ax恒成立,求实数a的取值范围; (3)求证函数f(x)在区间[0,1)上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,≈1.6,e0.3≈1.3)。
已知a,b均为正数,且a+b=1,证明: (1) (2)
在平面直角坐标系中,原点为,抛物线的方程为,线段是抛物线的一条动弦. (1)求抛物线的准线方程和焦点坐标; (2)若,求证:直线恒过定点; (3)当时,设圆,若存在且仅存在两条动弦,满足直线与圆相切,求半径的取值范围?
定义函数(为定义域)图像上的点到坐标原点的距离为函数的的模.若模存在最大值,则称之为函数的长距;若模存在最小值,则称之为函数的短距. (1)分别判断函数与是否存在长距与短距,若存在,请求出; (2)求证:指数函数的短距小于1; (3)对于任意是否存在实数,使得函数的短距不小于2,若存在,请求出的取值范围;不存在,则说明理由?