在已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为,(1).求的解析式 (2).当时,求的值域。
定义在R上的函数同时满足以下条件: ①在(0,1)上是减函数,在(1,+∞)上是增函数; ②是偶函数; ③在x=0处的切线与直线y=x+2垂直. (1)求函数的解析式; (2)设g(x)=,若存在实数x∈[1,e],使g(x)<,求实数m的取值范围。
已知动点P与平面上两定点连线的斜率的积为定值. (1)试求动点P的轨迹方程C. (2)设直线与曲线C交于M、N两点,当|MN|=时,求直线l的方程.
已知是等差数列,前n项和是,且,, (1)求数列的通项公式; (2)令=·2n,求数列的前n项和
已知命题:方程表示焦点在y轴上的椭圆; 命题:双曲线的离心率,若或为真命题,且为假命题,求实数的取值范围.
设函数,其中. (1)当时,求不等式的解集; (2)若不等式的解集为,求的值.