(本小题满分14分) 为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题: (1)填充频率分布表的空格(将答案直接填在表格内); (2)补全频数条形图; (3)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?
选修4-1:几何证明选讲 如图内接于圆,,直线切圆于点,弦相交于点。(1)求证≌;(2)若
(本小题满分12分) 已知函数,函数是区间[-1,1]上的减函数. (I)求的最大值; (II)若上恒成立,求t的取值范围; (Ⅲ)讨论关于x的方程的根的个数.
(本小题满分12分) 设、分别是椭圆的左、右焦点. (Ⅰ)若是该椭圆上的一个动点,求·的最大值和最小值; (Ⅱ)设过定点的直线与椭圆交于不同的两点、,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.
(本小题满分12分) 如图,在四棱锥P-ABCD中,PA底面ABCD,DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点. (Ⅰ)试证:AB平面BEF; (Ⅱ)设PA=k·AB,若平面与平面的夹角大于,求k的取值范围.
(本小题满分12分) 某市举行一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:
(1)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少? (2)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量的分布列和数学期望.