高中数学

如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是点A在PB、PC上的射影,给出下列结论:

①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC;⑤.其中正确命题的序号是      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:

①PA∥平面MOB;
②MO∥平面PAC;
③OC⊥平面PAC;
④平面PAC⊥平面PBC.
其中正确的命题是     (填上所有正确命题的序号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图是棱长为的正方体的平面展开图,则在原正方体中,

平面;   
平面
③CN与BM成角;
④DM与BN垂直.
以上四个命题中,正确命题的序号是____  ____。 (写出所有正确命题的序号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

所在平面外一点,作,垂足为,连接,,,若==,则          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三棱锥中,是该三棱锥外部(不含表面)的一点,给出下列四个命题,
① 存在无数个点,使
② 存在唯一点,使四面体为正三棱锥;
③ 存在无数个点,使
④ 存在唯一点,使四面体有三个面为直角三角形.
其中正确命题的序号是       .

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正方体中,点为正方形 的中心.下列说法正确的是     (写出你认为正确的所有命题的序号).
①直线与平面所成角的正切值为
②若,分别是正方形 , 的中心,则
③若,分别是正方形 , 的中心,则
④平面中不存在使成立的点.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中正确的是          .

①BM|是定值         
②点M在某个球面上运动
③存在某个位置,使DE⊥A1 C   
④存在某个位置,使MB//平面A1DE

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在梯形ABCD中,AB∥CD,AB平面α,CD平面α,则直线CD与平面α内的直线的位置关系可能是________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知平面α,β,直线.给出下列命题:
① 若,则
② 若,则
③ 若,则;   
④ 若,则.
其中是真命题的是         .(填写所有真命题的序号).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对于四面体,以下说法中,正确的序号为       (多选、少选、选错均不得分).
①若中点,则平面⊥平面
②若,则
③若所有棱长都相等,则该四面体的外接球与内切球的半径之比为2:1;
④若以为端点的三条棱所在直线两两垂直,则在平面内的射影为的垂心;
⑤分别作两组相对棱中点的连线,则所得的两条直线异面。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

是两个相交平面,则在下列命题中,真命题的序号为        .(写出所有真命题的序号)                  
①若直线,则在平面内,一定不存在与直线平行的直线.
②若直线,则在平面内,一定存在无数条直线与直线垂直.
③若直线,则在平面内,不一定存在与直线垂直的直线.
④若直线,则在平面内,一定存在与直线垂直的直线.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,是圆O的直径,是圆周上不同于的任意一点,平面,则四面体的四个面中,直角三角形的个数有       个.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在三棱柱中,底面,上一动点,则的最小值是       

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

表示两条直线,表示两个平面,现给出下列命题:
①若,则;  
②若,则
③若,则; 
④若,则
其中真命题是       .(写出所有真命题的序号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱中,四边形是边长为4的正方形,平面⊥平面

(Ⅰ)求证:⊥平面
(Ⅱ)若点是线段的中点,请问在线段是否存在点,使得?若存在,请说明点的位置,若不存在,请说明理由;
(Ⅲ)(本小问只理科学生做)求二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用填空题