海关对同时从
三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如右表所示,工作人员用分层抽样的方法从这些商品中共抽取6件进行检测
| 地区 |
![]() |
![]() |
![]() |
| 数量 |
50 |
150 |
100 |
(1)求这6件样品中来自
各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.
某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为“成绩优秀”.
(1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面2x2列联表,并判断是否有
的把握认为“成绩优秀”与教学方式有关.
| 甲班(A方式) |
乙班(B方式) |
总计 |
|
| 成绩优秀 |
|||
| 成绩不优秀 |
|||
| 总计 |
附:
P(![]() |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
| k |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组得到的频率分布表如下图所示,
| 班号 |
分组 |
频数 |
频率 |
| 第1组 |
![]() |
5 |
0.050 |
| 第2组 |
![]() |
① |
0.350 |
| 第3组 |
![]() |
30 |
② |
| 第4组 |
![]() |
20 |
0.200 |
| 第5组 |
![]() |
10 |
0.100 |
| 合计 |
100 |
1.00 |

(1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求:第4组至少有一名学生被考官A面试的概率?
某公司生产产品A,产品质量按测试指标分为:指标大于或等于90为一等品,大于或等于
小于
为二等品,小于
为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利
元,生产一件三等品亏损10元.现随机抽查熟练工人甲和新工人乙生产的这种产品各100件进行检测,检测结果统计如下:
| 测试指标 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
| 甲 |
3 |
7 |
20 |
40 |
20 |
10 |
| 乙 |
5 |
15 |
35 |
35 |
7 |
3 |
现将根据上表统计得到甲、乙两人生产产品A为一等品、二等品、三等品的频率分别估计为他们生产产品A为一等品、二等品、三等品的概率.
(1)计算新工人乙生产三件产品A,给工厂带来盈利大于或等于100元的概率;
(2)记甲乙分别生产一件产品A给工厂带来的盈利和记为X,求随机变量X的概率分布和数学期望.
某市电视台在因特网上征集电视节目的现场参与观众,报名的共有12000人,分别来自4个城区,其中东城区2400人,西城区4600人,南城区3800人,北城区1200人,从中抽取60人参加现场节目,应当如何抽取?
设袋子中装有
个红球,
个黄球,
个蓝球,且规定:取出一个红球得1分,
取出一个黄球2分,取出蓝球得3分。
(1)当
时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量
为取出此2球所得分数之和,.求
分布列;
(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量
为取出此球所得分数.若
,求
某高中有高级教师96人,中级教师144人,初级教师48人,为了进一步推进高中课程改革,邀请甲、乙、丙、丁四位专家到校指导。学校计划从所有教师中采用分层抽样办法选取6名教师分别与专家一对一交流,选出的6名教师再由专家随机抽取教师进行教学调研。
(1)求应从高级教师、中级教师、初级教师中分别抽取几人;
(2)若甲专家选取了两名教师,这两名教师分别是高级教师和中级教师的概率;
(3)若每位专家只抽一名教师,每位教师只与其中一位专家交流,求高级教师恰有一人被抽到的概率。
某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求n的值;
(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖,.求a和b至少有一人上台抽奖的概率;
某班同学利用劳动节进行社会实践,对
岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

(1)补全频率分布直方图并求
、
、
的值;
(2)从年龄段在
的“低碳族”中采用分层抽样法抽取
人参加户外低碳体验活动,其中每组各选多少人?
某工厂生产A、B、C三种不同型号的产品,产品数量之比为3:4:7,现用分层抽样的方法抽取
容量为
的样本,样本中A型号产品有15件,那么样本容量
为_______.
学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为100的样本,
其频率分布直方图如图所示,则据此估计支出在[50,60)元的同学的概率为____________.
从甲、乙两班分别任意抽出10名学生进行英语口语测验,其测验成绩的方差分别为S12= 13.2,S22=26.26,则
| A.甲班10名学生的成绩比乙班10名学生的成绩整齐 |
| B.乙班10名学生的成绩比甲班10名学生的成绩整齐 |
| C.甲、乙两班10名学生的成绩一样整齐 |
| D.不能比较甲、乙两班10名学生成绩的整齐程度 |
某社团组织
名志愿者利用周末和节假日参加社会公益活动,活动内容是:1、到各社区宣传慰问,倡导文明新风;2、到指定的医院、福利院做义工,帮助那些需要帮助的人.各位志愿者根据各自的实际情况,选择了不同的活动项目,相关的数据如下2
2的列联表所示:
| 宣传慰问 |
义工 |
总计 |
|
| 20至40岁 |
16 |
||
| 大于40岁 |
15 |
23 |
|
| 总计 |
24 |
50 |
(1)填上表中所空缺的数值。
(2)分层抽样方法在做义工的志愿者中随机抽取6名,年龄在20至40岁与大于40岁的应该各抽取几名?
(3)根据(2)抽取的6名志愿者中任取2名,求选取的2人中分别来自上述年龄段各1人的概率。
将某班参加社会实践编号为:1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为6的样本,已知5号,21号,29号,37号,45号学生在样本中,则样本中还有一名学生的编号是 .
下列四个命题:
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②某只股票经历了l0个跌停(每次跌停,即下跌l0%)后需再经过10个涨停(每次涨停,即上涨10%)
就可以回到原来的净值;
③某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部;数学平均分分别是a、b,则这两
个级部的数学平均分为
④某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800
名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组
00l~016中随机抽到的学生编号是007.
其中真命题的个数是()
| A.0个 | B.1个 | C.2个 | D.3个 |