某班同学利用劳动节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图并求、、的值;(2)从年龄段在的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中每组各选多少人?
已知函数 f ( x ) = x 2 ln x . (1)求函数 f ( x ) 的单调区间; (2)证明:对任意的 t > 0 ,存在唯一的 s ,使 t = f ( s ) . (3)设(2)中所确定的 s 关于 t 的函数为 s = g ( t ) ,证明:当 t > e 2 时,有 2 5 < ln g ( t ) ln t < 1 2 .
已知首项为 3 2 的等比数列 { a n } 不是递减数列,其前 n 项和为 S n ( n ∈ N + ) ,且 S 3 + a 3 , S 5 + a 5 , S 4 + a 4 成等差数列. (1)求数列 { a n } 的通项公式; (2)设 T n = S n - 1 S n ( n ∈ N + ) ,求数列 { T n } 的最大项的值与最小项的值.
设椭圆的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为. (1)求椭圆的方程; (2)设分别为椭圆的左,右顶点,过点且斜率为的直线与椭圆交于两点.若,求的值.
如图,四棱柱中,侧棱,,,,,为棱的中点. (1)证明; (2)求二面角的正弦值. (3)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.
一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4; 白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (1)求取出的4张卡片中,含有编号为3的卡片的概率. (2)再取出的4张卡片中,红色卡片编号的最大值设为,求随机变量的分布列和数学期望.