设袋子中装有个红球,个黄球,个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分。(1)当时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,.求分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量为取出此球所得分数.若,求
如图,直三棱柱的底面是等腰直角三角形,,侧棱底面,且,是的中点,是上的点. (1)求异面直线与所成角的大小(结果用反三角函数表示); (2)若,求线段的长.
已知函数,. (1)讨论在内和在内的零点情况. (2)设是在内的一个零点,求在上的最值. (3)证明对恒有.[来
椭圆:的左顶点为,直线交椭圆于两点(上下),动点和定点都在椭圆上. (1)求椭圆方程及四边形的面积. (2)若四边形为梯形,求点的坐标. (3)若为实数,,求的最大值.
如图,已知平面平面,且四边形为矩形,四边形为直角梯形,,,,,. (1)作出这个几何体的三视图(不要求写作法). (2)设是直线上的动点,判断并证明直线与直线的位置关系. (3) 求三棱锥的体积.[来.
执行如图所描述的算法程序,记输出的一列的值依次为,其中且. (1)若输入,写出全部输出结果. (2)若输入,记,求与的关系().