某高中有高级教师96人,中级教师144人,初级教师48人,为了进一步推进高中课程改革,邀请甲、乙、丙、丁四位专家到校指导。学校计划从所有教师中采用分层抽样办法选取6名教师分别与专家一对一交流,选出的6名教师再由专家随机抽取教师进行教学调研。(1)求应从高级教师、中级教师、初级教师中分别抽取几人;(2)若甲专家选取了两名教师,这两名教师分别是高级教师和中级教师的概率;(3)若每位专家只抽一名教师,每位教师只与其中一位专家交流,求高级教师恰有一人被抽到的概率。
在数列中,其前项和为,满足. (1)求数列的通项公式; (2)设(为正整数),求数列的前项和.
如图,四棱锥中,面,、分别为、的中点,,. (1)证明:∥面; (2)求面与面所成锐角的余弦值.
袋中装有大小相同的黑球和白球共个,从中任取个都是白球的概率为.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取 ,每次摸取个球,取出的球不放回,直到其中有一人取到白球时终止.用表示取球终止时取球的总次数. (1)求袋中原有白球的个数; (2)求随机变量的概率分布及数学期望.
已知向量,,. (1)求函数的单调递减区间; (2)在中,分别是角的对边,,, 若,求的大小.
过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知. (1)求椭圆的离心率; (2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.