已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.(1)求函数f(x)的表达式;(2)若数列{an}满足a1=,an+1=f(an),bn=-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).
统计表明:某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/每小时)的函数解析式可以表示为,已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大速度行驶时,从甲地到乙地耗油最少?最少为多少升?
已知是定义在上的奇函数,且,若,有恒成立.(1)判断在上是增函数还是减函数,并证明你的结论;(2)若对所有恒成立,求实数的取值范围。
已知函数,,的定义域为 (1)求的值;(2)若函数在区间上是单调递减函数,求实数的取值范围。
函数.若的定义域为,求实数的取值范围.
在△ABC中,若.(Ⅰ)判断△ABC的形状; (Ⅱ)在上述△ABC中,若角C的对边,求该三角形内切圆半径的取值范围。