高中数学

如图,设,且.当时,定义平面坐标系-仿射坐标系,在-仿射坐标系中,任意一点的斜坐标这样定义:分别为与轴、轴正向相同的单位向量,若,则记为,那么在以下的结论中,正确的有.(填上所有正确结论的序号)
①设,若,则
②设,则
③设,若,则
④设,若,则
⑤设,若的夹角,则.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,椭圆经过点,其左、右顶点分别是,左、右焦点分别是(异于)是椭圆上的动点,连接交直线两点,若成等比数列.

(1)求此椭圆的离心率;
(2)求证:以线段为直径的圆过点.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)若曲线在点处的切线与直线平行,求实数的值;
(2)若函数处取得极小值,且,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列的前项和为满足.
(1)函数与函数互为反函数,令,求数列的前项和
(2)已知数列满足,证明:对任意的整数,有.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知点,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.
(1)当点在圆上运动时,求点的轨迹方程
(2)已知是曲线上的两点,若曲线上存在点,满足为坐标原点),求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为,对称轴与地面垂直,沟深2米,沟中水深1米.
(1)求水面宽;
(2)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?


(3)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数上是减函数,在上是增函数,函数上有三个零点,且是其中一个零点.
(1)求的值;
(2)求的取值范围;
(3)设,且的解集为,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知椭圆的短半轴长为,动点在直线为半焦距)上.
(1)求椭圆的标准方程;
(2)求以为直径且被直线截得的弦长为的圆的方程;
(3)设是椭圆的右焦点,过点的垂线与以为直径的圆交于点
求证:线段的长为定值,并求出这个定值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设数列的前项和为,且,其中是不为零的常数.
(1)证明:数列是等比数列;
(2)当时,数列满足,求数列的通项公式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数
(1)求的单调区间;
(2)当时,若方程上有两个实数解,求实数的取值范围;
(3)证明:当时,

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为.点为圆上任一点,且满足,动点的轨迹记为曲线

(1)求圆的方程及曲线的轨迹方程;
(2)若直线分别交曲线于点
求四边形的周长;
(3)已知曲线为椭圆,写出椭圆的对称轴、顶点坐标、范围和焦点坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为.点为圆上任一点,且满足,动点的轨迹记为曲线

(1)求圆的方程及曲线的方程;
(2)若两条直线分别交曲线于点,求四边形面积的最大值,并求此时的的值.
(3)证明:曲线为椭圆,并求椭圆的焦点坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列中,,对任意的成等比数列,公比为成等差数列,公差为,且
(1)写出数列的前四项;
(2)设,求数列的通项公式;
(3)求数列的前项和

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

是定义在上的奇函数,其图象如图所示,令,则下列关于函数的叙述正确的是

A.若,则函数的图象关于原点对称
B.若,则方程有大于2的实根
C.若,则方程有两个实根
D.若,则方程有两个实根
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知
(1)若,求的极大值点;
(2)若存在单调递减区间,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学试题