如图,已知椭圆C:+y2=1,A、B是四条直线x=±2,y=±1所围成的两个顶点.
(1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两上动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,说明理由.
双曲线=1(a>0,b>0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(1,2)在“上”区域内,则双曲线离心率e的取值范围是________.
如图是见证魔术师“论证”64=65飞神奇.对这个乍看起来颇为神秘的现象,我们运用数学知识不难发现其中的谬误.另外,我们可以更换图中的数据,就能构造出许多更加直观与“令人信服”的“论证”.
请你用数列知识归纳:(1)这些图中的数所构成的数列:________;(2)写出与这个魔术关联的一个数列递推关系式:________.
设,分别是椭圆:的左、右焦点,过作倾斜角为的直线交椭圆于,两点, 到直线的距离为,连结椭圆的四个顶点得到的菱形面积为.
(1)求椭圆的方程;
(2)过椭圆的左顶点作直线交椭圆于另一点, 若点是线段垂直平分线上的一点,且满足,求实数的值.
如图,椭圆的离心率为,轴被曲线截得的线段长等于的短轴长。与轴的交点为,过坐标原点的直线与相交于点,直线分别与相交于点。
(1)求、的方程;
(2)求证:。
(3)记的面积分别为,若,求的取值范围。
已知椭圆的离心率与双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(3)设第(2)问中的与轴交于点,不同的两点在上,且满足,求的取值范围.
已知离心率为的椭圆()过点
(1)求椭圆的方程;
(2)过点作斜率为直线与椭圆相交于两点,求的长.
已知直线l:y=x+,圆O:x2+y2=5,椭圆E:=1(a>b>0)的离心率e=,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.
如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以坐标原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.
(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上.
已知数列{an}的前n项和是Sn,且Sn+an=1.
(1)求数列{an}的通项公式;
(2)记bn=log3,数列的前n项和为Tn,证明:Tn<.
已知数列{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=3,b1=1,a2=b2,3a5=b3,若存在常数u,v对任意正整数n都有an=3logubn+v,则u+v=________.
设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求|AB|;
(2)若直线l的斜率为1,求b的值.
已知椭圆中心在坐标原点,焦点在x轴上,离心率为,它的一个顶点为抛物线x2=4y的焦点.
(1)求椭圆方程;
(2)若直线y=x-1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程;
(3)若斜率为1的直线交椭圆于M、N两点,求△OMN面积的最大值(O为坐标原点).
设定义在R上的函数f(x)是最小正周期为2π的偶函数;f′(x)是f(x)的导函数,当x∈[0,π]时,0<f(x)<1;当x∈(0,π)且x≠时,f′(x)>0.则函数y=f(x)-sin x在[-2π,2π]上的零点个数为________.
设点P在曲线y=ex上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为( ).
A.1-ln 2 | B.(1-ln 2) | C.1+ln 2 | D.(1+ln 2) |