初中数学
数与式
有理数
正数和负数
有理数
数轴
相反数
绝对值
非负数的性质:绝对值
倒数
有理数大小比较
有理数的加法
有理数的减法
有理数的加减混合运算
有理数的乘法
有理数的除法
有理数的乘方
非负数的性质:偶次方
有理数的混合运算
近似数和有效数字
科学记数法—表示较大的数
科学记数法—表示较小的数
科学记数法—原数
科学记数法与有效数字
计算器—基础知识
计算器—有理数
数学常识
用数字表示事件
尾数特征
无理数与实数
平方根
算术平方根
非负数的性质:算术平方根
立方根
计算器—数的开方
无理数
实数
实数的性质
实数与数轴
实数大小比较
估算无理数的大小
实数的运算
分数指数幂
代数式
代数式
列代数式
代数式求值
同类项
合并同类项
去括号与添括号
规律型:数字的变化类
规律型:图形的变化类
整式
整式
单项式
多项式
整式的加减
整式的加减—化简求值
同底数幂的乘法
幂的乘方与积的乘方
同底数幂的除法
单项式乘单项式
单项式乘多项式
多项式乘多项式
完全平方公式
完全平方公式的几何背景
完全平方式
平方差公式
平方差公式的几何背景
整式的除法
整式的混合运算
整式的混合运算—化简求值
零指数
负整数指数幂
因式分解
因式分解的意义
公因式
因式分解-提公因式法
因式分解-运用公式法
提公因式法与公式法的综合运用
因式分解-分组分解法
因式分解-十字相乘法等
实数范围内分解因式
因式分解的应用
分式
分式的定义
分式有意义的条件
分式的值为零的条件
分式的值
分式的基本性质
约分
通分
最简分式
最简公分母
分式的乘除法
分式的加减法
分式的混合运算
分式的化简求值
零指数幂
负整数指数幂
列代数式(分式)
二次根式
二次根式的定义
二次根式有意义的条件
二次根式的性质与化简
最简二次根式
二次根式的乘除法
分母有理化
同类二次根式
二次根式的加减法
二次根式的混合运算
二次根式的化简求值
二次根式的应用
方程与不等式
一元一次方程
方程的定义
方程的解
等式的性质
一元一次方程的定义
一元一次方程的解
解一元一次方程
含绝对值符号的一元一次方程
同解方程
由实际问题抽象出一元一次方程
一元一次方程的应用
二元一次方程组
二元一次方程的定义
二元一次方程的解
解二元一次方程
由实际问题抽象出二元一次方程
二元一次方程的应用
二元一次方程组的定义
二元一次方程组的解
解二元一次方程组
由实际问题抽象出二元一次方程组
二元一次方程组的应用
同解方程组
解三元一次方程组
三元一次方程组的应用
一元二次方程
一元二次方程的定义
一元二次方程的一般形式
一元二次方程的解
估算一元二次方程的近似解
解一元二次方程-直接开平方法
解一元二次方程-配方法
解一元二次方程-公式法
解一元二次方程-因式分解法
换元法解一元二次方程
根的判别式
根与系数的关系
由实际问题抽象出一元二次方程
一元二次方程的应用
配方法的应用
高次方程
无理方程
分式方程
分式方程的定义
分式方程的解
解分式方程
换元法解分式方程
分式方程的增根
由实际问题抽象出分式方程
分式方程的应用
不等式与不等式组
不等式的定义
不等式的性质
不等式的解集
在数轴上表示不等式的解集
一元一次不等式的定义
解一元一次不等式
一元一次不等式的整数解
由实际问题抽象出一元一次不等式
一元一次不等式的应用
一元一次不等式组的定义
解一元一次不等式组
一元一次不等式组的整数解
由实际问题抽象出一元一次不等式组
一元一次不等式组的应用
函数
平面直角坐标系
点的坐标
规律型:点的坐标
坐标确定位置
坐标与图形性质
两点间的距离公式
函数基础知识
常量与变量
函数的概念
函数关系式
函数自变量的取值范围
函数值
函数的图象
动点问题的函数图象
函数的表示方法
分段函数
一次函数
一次函数的定义
正比例函数的定义
一次函数的图象
正比例函数的图象
一次函数的性质
正比例函数的性质
一次函数图象与系数的关系
一次函数图象上点的坐标特征
一次函数图象与几何变换
待定系数法求一次函数解析式
待定系数法求正比例函数解析式
一次函数与一元一次方程
一次函数与一元一次不等式
一次函数与二元一次方程(组)
两条直线相交或平行问题
根据实际问题列一次函数关系式
一次函数的应用
一次函数综合题
反比例函数
反比例函数的定义
反比例函数的图象
反比例函数图象的对称性
反比例函数的性质
反比例函数系数k的几何意义
反比例函数图象上点的坐标特征
待定系数法求反比例函数解析式
反比例函数与一次函数的交点问题
根据实际问题列反比例函数关系式
反比例函数的应用
反比例函数综合题
二次函数
二次函数的定义
二次函数的图象
二次函数的性质
二次函数图象与系数的关系
二次函数图象上点的坐标特征
二次函数图象与几何变换
二次函数的最值
待定系数法求二次函数解析式
二次函数的三种形式
抛物线与x轴的交点
图象法求一元二次方程的近似根
二次函数与不等式(组)
根据实际问题列二次函数关系式
二次函数的应用
二次函数综合题
图形的性质
图形认识初步
认识立体图形
点、线、面、体
欧拉公式
几何体的表面积
认识平面图形
几何体的展开图
展开图折叠成几何体
专题:正方体相对两个面上的文字
截一个几何体
直线、射线、线段
直线的性质:两点确定一条直线
线段的性质:两点之间线段最短
两点间的距离
比较线段的长短
角的概念
钟面角
方向角
度分秒的换算
角平分线的定义
角的计算
余角和补角
七巧板
线段的和差
角的大小比较
计算器-角的换算
线段的中点
相交线与平行线
相交线
对顶角、邻补角
垂线
垂线段最短
点到直线的距离
同位角、内错角、同旁内角
平行线
平行公理及推论
平行线的判定
平行线的性质
平行线的判定与性质
平行线之间的距离
三角形
三角形
三角形的角平分线、中线和高
三角形的面积
三角形的稳定性
三角形的重心
三角形三边关系
三角形内角和定理
三角形的外角性质
全等图形
全等三角形的性质
全等三角形的判定
直角三角形全等的判定
全等三角形的判定与性质
全等三角形的应用
角平分线的性质
线段垂直平分线的性质
等腰三角形的性质
等腰三角形的判定
等腰三角形的判定与性质
等边三角形的性质
等边三角形的判定
等边三角形的判定与性质
直角三角形的性质
含30度角的直角三角形
直角三角形斜边上的中线
勾股定理
勾股定理的证明
勾股定理的逆定理
勾股数
勾股定理的应用
平面展开-最短路径问题
等腰直角三角形
三角形中位线定理
三角形综合题
四边形
多边形
多边形的对角线
多边形内角与外角
平面镶嵌(密铺)
平行四边形的性质
平行四边形的判定
平行四边形的判定与性质
菱形的性质
菱形的判定
菱形的判定与性质
矩形的性质
矩形的判定
矩形的判定与性质
正方形的性质
正方形的判定
正方形的判定与性质
梯形
直角梯形
等腰梯形的性质
等腰梯形的判定
梯形中位线定理
*平面向量
中点四边形
四边形综合题
平面向量的加法
平面向量的减法
圆的认识
垂径定理
垂径定理的应用
圆心角、弧、弦的关系
圆周角定理
圆内接四边形的性质
相交弦定理
点与圆的位置关系
确定圆的条件
三角形的外接圆与外心
直线与圆的位置关系
切线的性质
切线的判定
切线的判定与性质
弦切角定理
切线长定理
切割线定理
三角形的内切圆与内心
圆与圆的位置关系
相切两圆的性质
相交两圆的性质
正多边形和圆
弧长的计算
扇形面积的计算
圆锥的计算
圆柱的计算
圆的综合题
尺规作图
作图—尺规作图的定义
作图—基本作图
作图—复杂作图
作图—应用与设计作图
作图—代数计算作图
命题与证明
命题与定理
推理与论证
反证法
轨迹
图形的变化
图形的对称
生活中的轴对称现象
轴对称的性质
轴对称图形
镜面对称
关于x轴、y轴对称的点的坐标
坐标与图形变化-对称
作图-轴对称变换
利用轴对称设计图案
剪纸问题
轴对称-最短路线问题
翻折变换(折叠问题)
图形的剪拼
胡不归问题
线段的垂直平分线定理
线段垂直平分线逆定理
作图--线段垂直平分
角平分线定理
角平分线逆定理
图形的平移
生活中的平移现象
平移的性质
坐标与图形变化-平移
作图-平移变换
利用平移设计图案
图形的旋转
生活中的旋转现象
旋转的性质
旋转对称图形
中心对称
中心对称图形
关于原点对称的点的坐标
坐标与图形变化-旋转
作图-旋转变换
利用旋转设计图案
几何变换的类型
几何变换综合题
图形的相似
比例的性质
比例线段
黄金分割
平行线分线段成比例
相似图形
相似多边形的性质
相似三角形的性质
相似三角形的判定
相似三角形的判定与性质
相似三角形的应用
作图—相似变换
位似变换
作图-位似变换
射影定理
相似形综合题
实数与向量相乘
平面向量定理
向量的线性运算
锐角三角函数
锐角三角函数的定义
锐角三角函数的增减性
同角三角函数的关系
互余两角三角函数的关系
特殊角的三角函数值
计算器—三角函数
解直角三角形
解直角三角形的应用
解直角三角形的应用-坡度坡角问题
解直角三角形的应用-仰角俯角问题
解直角三角形的应用-方向角问题
投影与视图
简单几何体的三视图
简单组合体的三视图
由三视图判断几何体
作图-三视图
平行投影
中心投影
视点、视角和盲区
统计与概率
数据收集与处理
调查收集数据的过程与方法
全面调查与抽样调查
总体、个体、样本、样本容量
抽样调查的可靠性
用样本估计总体
频数与频率
频数(率)分布表
频数(率)分布直方图
频数(率)分布折线图
统计表
扇形统计图
条形统计图
折线统计图
统计图的选择
其他统计图
数据分析
算术平均数
加权平均数
计算器-平均数
中位数
众数
极差
方差
标准差
计算器-标准差与方差
统计量的选择
概率
随机事件
可能性的大小
概率的意义
概率公式
几何概率
列表法与树状图法
游戏公平性
利用频率估计概率
模拟实验
数学竞赛
逻辑推理问题
抽屉原理
排列与组合问题
加法原理与乘法原理
容斥原理
简单的极端原理
简单的枚举法
计数方法
染色问题
整数问题
数的十进制
奇数与偶数
数的整除性
带余除法
质数与合数
约数与倍数
同余问题
尾数特征
完全平方数
质因数分解
整数问题的综合运用
数与式
有理数无理数的概念与运算
因式定理与综合除法
余式定理
立方公式
整式的等式证明
对称式和轮换对称式
部分分式
分式的条件求值
分式的等式证明
拆项、添项、配方、待定系数法
绝对值
因式分解
方程与不等式
含字母系数的一元一次方程
含绝对值符号的一元一次方程
二元一次不定方程的整数解
二元一次不定方程的应用
三元一次不定方程
非一次不定方程(组)
多元一次方程组
含字母系数的一元二次方程
含绝对值符号的一元二次方程
一元二次方程的整数根与有理根
一元二次方程根的分布
高次方程
无理方程
二元二次方程组
含字母系数的一元一次不等式
含绝对值的一元一次不等式
一元二次不等式
应用类问题
函数
y=|ax+b|的图象与性质
y=|ax#178;+bx+c|的图象与性质
含字母系数的二次函数
整式函数的最值
分式函数的最值
绝对值函数的最值
无理函数的最值
多元函数的最值
一元二次方程的最值
二次函数在给定区间上的最值
几何问题的最值
实际问题的最值
取整函数
一次函数的最值
函数最值问题
几何
三角形边角关系
面积及等积变换
三角形的五心
四点共圆
圆幂定理
梅涅劳斯定理与塞瓦定理
正弦定理与余弦定理
四种命题及其关系
一笔画定理
几何不等式
立体图形
路线选择问题

如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角 α = 20 ° ,两树间的坡面距离 AB = 5 m ,则这两棵树的水平距离约为    m (结果精确到 0 . 1 m ,参考数据: sin 20 ° 0 . 342 cos 20 ° 0 . 940 tan 20 ° 0 . 364 )

来源:2020年辽宁省阜新市中考数学试卷
  • 更新:2021-01-16
  • 题型:填空题
  • 难度:中等

沿江大堤经过改造后的某处横断面为如图所示的梯形 ABCD ,高 DH = 12 米,斜坡 CD 的坡度 i = 1 : 1 .此处大堤的正上方有高压电线穿过, PD 表示高压线上的点与堤面 AD 的最近距离 ( P D H 在同一直线上),在点 C 处测得 DCP = 26 °

(1)求斜坡 CD 的坡角 α

(2)电力部门要求此处高压线离堤面 AD 的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?

(参考数据: sin 26 ° 0 . 44 tan 26 ° 0 . 49 sin 71 ° 0 . 95 tan 71 ° 2 . 90 )

来源:2020年湖南省益阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:解答题
  • 难度:中等

为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形 ABCD 为矩形, DE = 10 m ,其坡度为 i 1 = 1 : 3 ,将步梯 DE 改造为斜坡 AF ,其坡度为 i 2 = 1 : 4 ,求斜坡 AF 的长度.(结果精确到0.01 m ,参考数据: 3 1 . 732 17 4 . 123 )

来源:2020年湖南省湘潭市中考数学试卷
  • 更新:2020-12-31
  • 题型:解答题
  • 难度:中等

如图,拦水坝的横断面为梯形,坝高,坡角,求的长.

来源:2019年湖北省十堰市中考数学试卷
  • 更新:2021-01-01
  • 题型:解答题
  • 难度:中等

为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度,他站在距离教学楼底部处6米远的地面处,测得宣传牌的底部的仰角为,同时测得教学楼窗户处的仰角为在同一直线上).然后,小明沿坡度的斜坡从走到处,此时正好与地面平行.

(1)求点到直线的距离(结果保留根号);

(2)若小明在处又测得宣传牌顶部的仰角为,求宣传牌的高度(结果精确到0.1米,

来源:2019年湖北省鄂州市中考数学试卷
  • 更新:2021-01-01
  • 题型:解答题
  • 难度:中等

自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡米,坡度为;将斜坡的高度降低米后,斜坡改造为斜坡,其坡度为.求斜坡的长.(结果保留根号)

来源:2019年山东省潍坊市中考数学试卷
  • 更新:2021-01-01
  • 题型:解答题
  • 难度:中等

汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从共有30级阶梯,平均每级阶梯高,斜坡的坡度;加固后,坝顶宽度增加2米,斜坡的坡度,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)

来源:2019年四川省遂宁市中考数学试卷
  • 更新:2020-12-30
  • 题型:解答题
  • 难度:中等

如图, AB 是一垂直于水平面的建筑物,某同学从建筑物底端 B 出发,先沿水平方向向右行走20米到达点 C ,再经过一段坡度(或坡比)为 i = 1 : 0 . 75 、坡长为10米的斜坡 CD 到达点 D ,然后再沿水平方向向右行走40米到达点 E ( A B C D E 均在同一平面内).在 E 处测得建筑物顶端 A 的仰角为 24 ° ,则建筑物 AB 的高度约为(参考数据: sin 24 ° 0 . 41 cos 24 ° 0 . 91 tan 24 ° = 0 . 45 ) (    )

A.

21.7米

B.

22.4米

C.

27.4米

D.

28.8米

来源:2018年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:选择题
  • 难度:中等

如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部 E 点处测得旗杆顶端的仰角 AED = 58 ° ,升旗台底部到教学楼底部的距离 DE = 7 米,升旗台坡面 CD 的坡度 i = 1 : 0 . 75 ,坡长 CD = 2 米,若旗杆底部到坡面 CD 的水平距离 BC = 1 米,则旗杆 AB 的高度约为 (    ) (参考数据: sin 58 ° 0 . 85 cos 58 ° 0 . 53 tan 58 ° 1 . 6 )

A.

12.6米

B.

13.1米

C.

14.7米

D.

16.3米

来源:2018年重庆市中考数学试卷(a卷)
  • 更新:2021-01-02
  • 题型:选择题
  • 难度:中等

如图,小王在长江边某瞭望台 D 处,测得江面上的渔船 A 的俯角为 40 ° ,若 DE = 3 米, CE = 2 米, CE 平行于江面 AB ,迎水坡 BC 的坡度 i = 1 : 0 . 75 ,坡长 BC = 10 米,则此时 AB 的长约为 (    ) (参考数据: sin 40 ° 0 . 64 cos 40 ° 0 . 77 tan 40 ° 0 . 84 )

A.

5.1米

B.

6.3米

C.

7.1米

D.

9.2米

来源:2017年重庆市中考数学试卷(a卷)
  • 更新:2021-01-04
  • 题型:选择题
  • 难度:中等

如图所示,某办公大楼正前方有一根高度是15米的旗杆 ED ,从办公楼顶端 A 测得旗杆顶端 E 的俯角 α 45 ° ,旗杆底端 D 到大楼前梯坎底边的距离 DC 是20米,梯坎坡长 BC 是12米,梯坎坡度 i = 1 : 3 ,则大楼 AB 的高度约为 (    ) (精确到0.1米,参考数据: 2 1 . 41 3 1 . 73 6 2 . 45 )

A.

30.6

B.

32.1

C.

37.9

D.

39.4

来源:2016年重庆市中考数学试卷(b卷)
  • 更新:2021-01-03
  • 题型:选择题
  • 难度:中等

如图,某商店营业大厅自动扶梯的倾斜角为的长为12米,求大厅两层之间的距离的长.(结果精确到0.1米)(参考数据:

来源:2017年吉林省长春市中考数学试卷
  • 更新:2021-01-03
  • 题型:解答题
  • 难度:中等

如图,坡面CD的坡比为,坡顶的平地BC上有一棵小树AB,当 太阳光线与水平线夹角成60°时,测得小树的在坡顶平地上的树影BC="3" 米,斜坡上的树影CD=米,则小树AB的高是      

  • 更新:2020-03-19
  • 题型:填空题
  • 难度:中等

拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是(  )

A.15m B.m C.m D.20m
  • 更新:2020-03-19
  • 题型:选择题
  • 难度:中等

(年贵州省黔南州)如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:中等

初中数学解直角三角形的应用-坡度坡角问题试题