初中数学

如图,线段 的直径,弦 于点 ,点 上任意一点,

(1)求 的半径 的长度;

(2)求

(3)直线 交直线 于点 ,直线 于点 ,连接 于点 ,求 的值.

来源:2017年广东省深圳市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4)

(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1

(2)以点O为位似中心,将△ABC缩小为原来的 1 2 ,得到△A2B2C2,请在y轴右侧画出△A2B2C2,并求出∠A2C2B2的正弦值.

来源:2016年广西南宁市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 A的坐标为(4,3),那么cosα的值是(  )

A.

3 4

B.

4 3

C.

3 5

D.

4 5

来源:2016年广东省中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图, A 经过平面直角坐标系的原点 O ,交 x 轴于点 B ( - 4 , 0 ) ,交 y 轴于点 C ( 0 , 3 ) ,点 D 为第二象限内圆上一点.则 CDO 的正弦值是 (    )

A.

3 5

B.

- 3 4

C.

3 4

D.

4 5

来源:2020年内蒙古赤峰市中考数学试卷
  • 更新:2021-01-25
  • 题型:未知
  • 难度:未知

如图, A 经过平面直角坐标系的原点 O ,交 x 轴于点 B ( - 4 , 0 ) ,交 y 轴于点 C ( 0 , 3 ) ,点 D 为第二象限内圆上一点.则 CDO 的正弦值是 (    )

A.

3 5

B.

- 3 4

C.

3 4

D.

4 5

来源:2020年内蒙古赤峰市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,对角线 AC BD 相交于点 O ,点 E BC 边上,且 CE = 2 BE ,连接 AE BD 于点 G ,过点 B BF AE 于点 F ,连接 OF 并延长,交 BC 于点 M ,过点 O OP OF DC 于点 N S 四边形 MONC = 9 4 ,现给出下列结论:① GE AG = 1 3 ;② sin BOF = 3 10 10 ;③ OF = 3 5 5 ;④ OG = BG ;其中正确的结论有 (    )

A.

①②③

B.

②③④

C.

①②④

D.

①③④

来源:2020年辽宁省朝阳市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, O 是对角线 AC BD 的交点, BE AC DF AC ,垂足分别为点 E F

(1)求证: OE = OF

(2)若 BE = 5 OF = 2 ,求 tan OBE 的值.

来源:2020年吉林省长春市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔顶中心点为点 B ,塔身中心线 AB 与垂直中心线 AC 的夹角为 A ,过点 B 向垂直中心线 AC 引垂线,垂足为点 D .通过测量可得 AB BD AD 的长度,利用测量所得的数据计算 A 的三角函数值,进而可求 A 的大小.下列关系式正确的是 (    )

A.

sin A = BD AB

B.

cos A = AB AD

C.

tan A = AD BD

D.

sin A = AD AB

来源:2020年吉林省长春市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,由边长为1的小正方形构成的网格中,点 A B C 都在格点上,以 AB 为直径的圆经过点 C D ,则 sin ADC 的值为 (    )

A.

2 13 13

B.

3 13 13

C.

2 3

D.

3 2

来源:2020年江苏省扬州市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

如图,点在反比例函数的图象上,且横坐标为1,过点作两条坐标轴的平行线,与反比例函数的图象相交于点,则直线轴所夹锐角的正切值为  

来源:2020年江苏省泰州市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

如图,二次函数的图象与轴交于点,过点轴的平行线交抛物线于另一点,抛物线过点,且顶点为,连接

(1)填空:   

(2)点是抛物线上一点,点的横坐标大于1,直线交直线于点.若,求点的坐标;

(3)点在直线上,点关于直线对称的点为,点关于直线对称的点为,连接.当点轴上时,直接写出的长.

来源:2020年江苏省常州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,点在线段上,且,分别以为边在线段的同侧作正方形,连接,则   

来源:2020年江苏省常州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图所示,的顶点在正方形对角线的延长线上,交于点,连接,满足

(1)求证:

(2)若正方形的边长为1,,求的值.

来源:2020年湖南省株洲市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 2 BC = 2 5 E BC 的中点,将 ΔABE 沿直线 AE 翻折,点 B 落在点 F 处,连结 CF ,则 cos ECF 的值为 (    )

A.

2 3

B.

10 4

C.

5 3

D.

2 5 5

来源:2020年湖北省咸宁市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 20 ,点 E BC 边上的一点,将 ΔABE 沿着 AE 折叠,点 B 刚好落在 CD 边上点 G 处;点 F DG 上,将 ΔADF 沿着 AF 折叠,点 D 刚好落在 AG 上点 H 处,此时 S ΔGFH : S ΔAFH = 2 : 3

(1)求证: ΔEGC ΔGFH

(2)求 AD 的长;

(3)求 tan GFH 的值.

来源:2020年湖北省荆州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

初中数学锐角三角函数的定义试题