如图,把某矩形纸片沿,折叠(点,在边上,点,在边上),使点和点落在边上同一点处,点的对称点为点,点的对称点为点,若,△的面积为4,△的面积为1,则矩形的面积等于 .
如图,在 中, , , 于点 , 于点 , .连接 ,将 沿直线 翻折至 所在的平面内,得 ,连接 .过点 作 交 于点 .则四边形 的周长为
A. |
8 |
B. |
|
C. |
|
D. |
|
如图,在 中, 是 边上的中点,连结 ,把 沿 翻折,得到 , 与 交于点 ,连结 ,若 , ,则点 到 的距离为
A. |
|
B. |
|
C. |
|
D. |
|
抛物线与轴交于点,(点在点的左边),与轴交于点,点是该抛物线的顶点.
(1)如图1,连接,求线段的长;
(2)如图2,点是直线上方抛物线上一点,轴于点,与线段交于点;将线段沿轴左右平移,线段的对应线段是,当的值最大时,求四边形周长的最小值,并求出对应的点的坐标;
(3)如图3,点是线段的中点,连接,将沿直线翻折至△的位置,再将△绕点旋转一周,在旋转过程中,点,的对应点分别是点,,直线分别与直线,轴交于点,.那么,在△的整个旋转过程中,是否存在恰当的位置,使是以为腰的等腰三角形?若存在,请直接写出所有符合条件的线段的长;若不存在,请说明理由.
如图,把三角形纸片折叠,使点、点都与点重合,折痕分别为、,得到,若厘米,则的边的长为 厘米.
如图,正方形中,,点是对角线上一点,连接,过点作,交于点,连接,交于点,将沿翻折,得到,连接,交于点,若点是边的中点,则的周长是 .
如图,正方形中,,点是对角线上一点,连接,过点作,交于点,连接,交于点,将沿翻折,得到,连接,交于点,若点是边的中点,则的周长是 .
如图,在正方形中,,点在边上,,连接,将沿翻折,点落在点处,点是对角线的中点,连接并延长交于点,连接,,则的周长是 .
正方形中,对角线,相交于点,平分交于点,把沿翻折,得到,点是的中点,连接,,.若.则四边形的面积是 .
如图,为的直径,点为上一点,将弧沿直线翻折,使弧的中点恰好与圆心重合,连接,,,过点的切线与线段的延长线交于点,连接,在的另一侧作.
(1)判断与的位置关系,并说明理由;
(2)若,求四边形的面积.
如图,矩形 的边 在 轴上, , ,把 沿直线 折叠,得到 , 交 轴于点 ,则点 的坐标是
A. |
|
B. |
|
C. |
|
D. |
|