初中数学

如图, O 是正五边形 ABCDE 的外接圆,点 P AE ̂ 的一点,则 CPD 的度数是 (    )

A. 30 ° B. 36 ° C. 45 ° D. 72 °

来源:2018年四川省广元市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知圆内接正三角形的面积为 3 ,则该圆的内接正六边形的边心距是 (    )

A.2B.1C. 3 D. 3 2

来源:2018年四川省德阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

阅读下列材料:

已知:如图1,等边△ A 1 A 2 A 3 内接于 O ,点 P A 1 A 2 ̂ 上的任意一点,连接 P A 1 P A 2 P A 3 ,可证: P A 1 + P A 2 = P A 3 ,从而得到: P A 1 + P A 2 P A 1 + P A 2 + P A 3 = 1 2 是定值.

(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;

证明:如图1,作 P A 1 M = 60 ° A 1 M A 2 P 的延长线于点 M

A 1 A 2 A 3 是等边三角形,

A 3 A 1 A 2 = 60 °

A 3 A 1 P = A 2 A 1 M

A 3 A 1 = A 2 A 1 A 1 A 3 P = A 1 A 2 P

A 1 A 3 P A 1 A 2 M

P A 3 = M A 2 = P A 2 + PM = P A 2 + P A 1

P A 1 + P A 2 P A 1 + P A 2 + P A 3 = 1 2 ,是定值.

(2)延伸:如图2,把(1)中条件“等边△ A 1 A 2 A 3 ”改为“正方形 A 1 A 2 A 3 A 4 ”,其余条件不变,请问: P A 1 + P A 2 P A 1 + P A 2 + P A 3 + P A 4 还是定值吗?为什么?

(3)拓展:如图3,把(1)中条件“等边△ A 1 A 2 A 3 ”改为“正五边形 A 1 A 2 A 3 A 4 A 5 ”,其余条件不变,则 P A 1 + P A 2 P A 1 + P A 2 + P A 3 + P A 4 + P A 5 =   (只写出结果).

来源:2018年四川省达州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, O 的内接正五边形 ABCDE 的对角线 AD BE 相交于点 G AE = 2 ,则 EG 的长是  

来源:2017年四川省宜宾市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, P Q 分别是 O 的内接正五边形的边 AB BC 上的点, BP = CQ ,则 POQ =   

来源:2017年四川省凉山州中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,等边三角形 ABC 和正方形 ADEF 都内接于 O ,则 AD : AB = (    )

A. 2 2 : 3 B. 2 : 3 C. 3 : 2 D. 3 : 2 2

来源:2020年四川省凉山州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

在三角形纸片 ABC (如图1)中, BAC = 78 ° AC = 10 .小霞用5张这样的三角形纸片拼成了一个内外都是正五边形的图形(如图2).

(1) ABC =         °

(2)求正五边形 GHMNC 的边 GC 的长.

参考值: sin 78 ° 0 . 98 cos 78 ° 0 . 21 tan 78 ° 4 . 7

来源:2019年江苏省镇江市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图, AC O 的内接正六边形的一边,点 B AC ̂ 上,且 BC O 的内接正十边形的一边,若 AB O 的内接正 n 边形的一边,则 n =          

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图, A B C D 为一个外角为 40 ° 的正多边形的顶点.若 O 为正多边形的中心,则 OAD =           

来源:2019年江苏省徐州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是 (    )

A. 6 3 - π B. 6 3 - 2 π C. 6 3 + π D. 6 3 + 2 π

来源:2019年江苏省宿迁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

半径为 R 的圆内接正三角形、正方形、正六边形的边心距分别为 a b c ,则 a b c 的大小关系是 (    )

A. a < b < c B. b < a < c C. a < c < b D. c < b < a

来源:2020年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是 (    )

A. 2 2 B. 3 2 C. 2 D. 3

来源:2017年四川省达州市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, ΔABC 是半径为2的圆内接正三角形,则图中阴影部分的面积是  (结果用含 π 的式子表示).

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知: O 是正方形 ABCD 的外接圆,点 E AB ̂ 上,连接 BE DE ,点 F AD ̂ 上连接 BF DF BF DE DA 分别交于点 G 、点 H ,且 DA 平分 EDF

(1)如图1,求证: CBE = DHG

(2)如图2,在线段 AH 上取一点 N (点 N 不与点 A 、点 H 重合),连接 BN DE 于点 L ,过点 H HK / / BN DE 于点 K ,过点 E EP BN ,垂足为点 P ,当 BP = HF 时,求证: BE = HK

(3)如图3,在(2)的条件下,当 3 HF = 2 DF 时,延长 EP O 于点 R ,连接 BR ,若 ΔBER 的面积与 ΔDHK 的面积的差为 7 4 ,求线段 BR 的长.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,正六边形 ABCDEF 内接于 O BE O 的直径,连接 BF ,延长 BA ,过 F FG BA ,垂足为 G

(1)求证: FG O 的切线;

(2)已知 FG = 2 3 ,求图中阴影部分的面积.

来源:2019年贵州省铜仁市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

初中数学正多边形和圆试题