阅读下列材料:
已知:如图1,等边△ 内接于 ,点 是 上的任意一点,连接 , , ,可证: ,从而得到: 是定值.
(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;
证明:如图1,作 , 交 的延长线于点 .
△ 是等边三角形,
,
又 , ,
△ △
.
,是定值.
(2)延伸:如图2,把(1)中条件“等边△ ”改为“正方形 ”,其余条件不变,请问: 还是定值吗?为什么?
(3)拓展:如图3,把(1)中条件“等边△ ”改为“正五边形 ”,其余条件不变,则 (只写出结果).
在三角形纸片 (如图1)中, , .小霞用5张这样的三角形纸片拼成了一个内外都是正五边形的图形(如图2).
(1) ;
(2)求正五边形 的边 的长.
参考值: , , .
如图, 是 的内接正六边形的一边,点 在 上,且 是 的内接正十边形的一边,若 是 的内接正 边形的一边,则 .
如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是
A. B. C. D.
半径为 的圆内接正三角形、正方形、正六边形的边心距分别为 , , ,则 , , 的大小关系是
A. B. C. D.
以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是
A. B. C. D.
如图, 是半径为2的圆内接正三角形,则图中阴影部分的面积是 (结果用含 的式子表示).
已知: 是正方形 的外接圆,点 在 上,连接 、 ,点 在 上连接 、 , 与 、 分别交于点 、点 ,且 平分 .
(1)如图1,求证: ;
(2)如图2,在线段 上取一点 (点 不与点 、点 重合),连接 交 于点 ,过点 作 交 于点 ,过点 作 ,垂足为点 ,当 时,求证: ;
(3)如图3,在(2)的条件下,当 时,延长 交 于点 ,连接 ,若 的面积与 的面积的差为 ,求线段 的长.