我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形 的边 在 轴上, 的中点是坐标原点 ,固定点 , ,把正方形沿箭头方向推,使点 落在 轴正半轴上点 处,则点 的对应点 的坐标为
A. |
, |
B. |
|
C. |
|
D. |
|
如图所示,小球从台球桌面 上的点 出发,撞击桌边发生反弹,反射角等于入射角若小球以每秒 个单位长度的速度沿图中箭头方向运动,则第50秒的小球所在位置的坐标为
A. |
|
B. |
|
C. |
|
D. |
|
如图,正方形 的顶点 、 的坐标分别为 , ,则点 关于原点 的对称点的坐标为
A. |
|
B. |
|
C. |
|
D. |
|
如图,若抛物线 与 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为 ,则反比例函数 的图象是
A. |
|
B. |
|
C. |
|
D. |
|
在平面直角坐标系中,函数的图象经过点,直线与图象交于点,与轴交于点.
(1)求的值;
(2)横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内恰有4个整点,结合函数图象,求的取值范围.
如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为 轴、 轴的正方向建立平面直角坐标系,有如下四个结论:
①当表示天安门的点的坐标为 ,表示广安门的点的坐标为 时,表示左安门的点的坐标为 ;
②当表示天安门的点的坐标为 ,表示广安门的点的坐标为 时,表示左安门的点的坐标为 ;
③当表示天安门的点的坐标为 ,表示广安门的点的坐标为 时,表示左安门的点的坐标为 ;
④当表示天安门的点的坐标为 ,表示广安门的点的坐标为 时,表示左安门的点的坐标为 .
上述结论中,所有正确结论的序号是
A. |
①②③ |
B. |
②③④ |
C. |
①④ |
D. |
①②③④ |
在平面直角坐标系 中,点 的坐标为 , ,点 的坐标为 , ,且 , ,若 , 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点 , 的"相关矩形",如图为点 , 的"相关矩形"示意图.
(1)已知点 的坐标为 ,
①若点 的坐标为 ,求点 , 的"相关矩形"的面积;
②点 在直线 上,若点 , 的"相关矩形"为正方形,求直线 的表达式;
(2) 的半径为 ,点 的坐标为 ,若在 上存在一点 ,使得点 , 的"相关矩形"为正方形,求 的取值范围.
如图,在平面直角坐标系 中,过点 的直线 与直线 相交于点 .
(1)求直线 的表达式;
(2)过动点 且垂直于 轴的直线与 , 的交点分别为 , ,当点 位于点 上方时,写出 的取值范围.
如图, 直线 ,在某平面直角坐标系中, 轴 , 轴 ,点 的坐标为 ,点 的坐标为 ,则坐标原点为
A. |
O 1 |
B. |
O 2 |
C. |
O 3 |
D. |
O 4 |
在平面直角坐标系中,的半径为1,,为外两点,.
给出如下定义:平移线段,得到的弦,分别为点,的对应点),线段长度的最小值称为线段到的“平移距离”.
(1)如图,平移线段得到的长度为1的弦和,则这两条弦的位置关系是 ;在点,,,中,连接点与点 的线段的长度等于线段到的“平移距离”;
(2)若点,都在直线上,记线段到的“平移距离”为,求的最小值;
(3)若点的坐标为,记线段到的“平移距离”为,直接写出的取值范围.
如图,点A1(1,0),过A1作轴的垂线交直线于点B1,以A1B1为边向右作正方形,在轴上一边的另一个端点为A2,过A2作轴的长线交直线于点B2,以A2B2为右作正方形…,依次进行下去.
(1)第4个正方形的边长是 ,第5个正方形的边长是 ;
(2)写出点An的坐标.
如图,平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(2,﹣3),△AB′O′是△ABO关于的A的位似图形,且O′的坐标为(﹣1,0),则点B′的坐标为 .
如图是学校与小明家位置示意图,如果以学校所在位置为坐标原点,水平方向为x轴建立直角坐标系,那么小明家所在位置的坐标为__________.