在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.
给出如下定义:平移线段AB,得到⊙O的弦A'B'(A',B'分别为点A,B的对应点),线段AA'长度的最小值称为线段AB到⊙O的“平移距离”.
(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是 P1P2//P3P4 ;在点P1,P2,P3,P4中,连接点A与点 的线段的长度等于线段AB到⊙O的“平移距离”;
(2)若点A,B都在直线y=3x+23上,记线段AB到⊙O的“平移距离”为d1,求d1的最小值;
(3)若点A的坐标为(2,32),记线段AB到⊙O的“平移距离”为d2,直接写出d2的取值范围.
如图已知二次函数图象的顶点为原点,直线的图象与该二次函数的图象交于A点(8,8),直线与x轴的交点为C,与y轴的交点为B. (1)求这个二次函数的解析式与B点坐标; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于D点,与x轴交于点E.设线段PD的长为h,点P的横坐标为t,求h与t之间的函数关系式,并写出自变量t的取值范围; (3)在(2)的条件下,在线段AB上是否存在点P,使得以点P、D、B为顶点的三角形与△BOC相似?若存在,请求出P点的坐标;若不存在,请说明理由.
如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点. (1)求证:△ABE∽△ECM; (2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.
如右上图,有一个面积为150平方米的长方形的鸡场,鸡场的一边靠墙(墙长18米),墙的对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米,求鸡场的长和宽各位多少米?
如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题: (1)将△ABC向右平移5个单位长度,画出平移后的△A1B1C1 ; (2)画出△ABC关于x轴对称的△A2B2C2 ; (3)将△ABC绕原点O 旋转180°,画出旋转后的△A3B3C3 ;
(1)计算: (2)解方程: