如图, ΔABC 中, ∠ ACB = 90 ° , AC = 6 cm , BC = 8 cm ,点 D 从点 B 出发,沿边 BA → AC 以 2 cm / s 的速度向终点 C 运动,过点 D 作 DE / / BC ,交边 AC (或 AB ) 于点 E .设点 D 的运动时间为 t ( s ) , ΔCDE 的面积为 S ( c m 2 ) .
(1)当点 D 与点 A 重合时,求 t 的值;
(2)求 S 关于 t 的函数解析式,并直接写出自变量 t 的取值范围.
如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF. (1)求证:BF=BD; (2)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.
在△ABC中,AD是△ABC的高,矩形EFGH的顶点E、H分别在边AB、AC上,FG在边BC上,且两邻边之比EF:FG=5:9,若AD=16cm,BC=48cm,求矩形EFGH的面积.
已知关于x的方程的两根是一个矩形两邻边的长. (1)k取何值时,方程在两个实数根; (2)当矩形的对角线长为时,求k的值.
如图,要利用一面墙(墙长为25米)建羊圈,用75米的围栏围成总面积为300平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?
已知,如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF. (1)求证:AB=AC; (2)若AC=3cm,AD=2cm,求DE的长.