甲、乙两个探测气球分别从海拔 5 m 和 15 m 处同时出发,匀速上升 60 min .如图是甲、乙两个探测气球所在位置的海拔 y (单位: m ) 与气球上升时间 x (单位: min ) 的函数图象.
(1)求这两个气球在上升过程中 y 关于 x 的函数解析式;
(2)当这两个气球的海拔高度相差 15 m 时,求上升的时间.
如图1,,分别在射线,上,且为钝角,现以线段,为斜边向的外侧作等腰直角三角形,分别是,,点,,分别是,,的中点.
(1)求证:;
(2)延长,交于点.
①如图2,若,求证:为等边三角形;
②如图3,若,求大小和的值.
如图,二次函数的图象经过点与.
(1)求,的值;
(2)点是该二次函数图象上,两点之间的一动点,横坐标为,写出四边形的面积关于点的横坐标的函数表达式,并求的最大值.
一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.
(1)写出按上述规定得到所有可能的两位数;
(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.
如图,一次函数的图象分别与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.
(1)求函数和的表达式;
(2)已知点,试在该一次函数图象上确定一点,使得,求此时点的坐标.
如图,河的两岸与相互平行,、是上的两点,、是上的两点,某人在点处测得,,再沿方向前进20米到达点(点在线段上),测得,求、两点间的距离.