随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场 B , C 两点之间的距离.如图所示,小星站在广场的 B 处遥控无人机,无人机在 A 处距离地面的飞行高度是 41 . 6 m ,此时从无人机测得广场 C 处的俯角为 63 ° ,他抬头仰视无人机时,仰角为 α ,若小星的身高 BE = 1 . 6 m , EA = 50 m (点 A , E , B , C 在同一平面内).
(1)求仰角 α 的正弦值;
(2)求 B , C 两点之间的距离(结果精确到 1 m ) .
( sin 63 ° ≈ 0 . 89 , cos 63 ° ≈ 0 . 45 , tan 63 ° ≈ 1 . 96 , sin 27 ° ≈ 0 . 45 , cos 27 ° ≈ 0 . 89 , tan 27 ° ≈ 0 . 51 )
(每题6分,共12分)计算: (1) (2)+
在平面直角坐标系xOy中,已知抛物线经过(2,1)和(6,-5)两点. (1)求抛物线的解析式; (2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,点P是在直线右侧的此抛物线上一点,过点P作PM轴,垂足为M. 若以A、P、M为顶点的三角形与△OCB相似,求点P的坐标; (3)点E是直线BC上的一点,点F是平面内的一点,若要使以点O、B、E、F为顶点的四边形是菱形,请直接写出点F的坐标.
如图,在平面直角坐标系xOy中,已知点B的坐标为(2,0),点C的坐标为(0,8),sin∠CAB=, E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连结CE. (1)求AC和OA的长; (2)设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式; (3)在(2)的条件下试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
已知抛物线. (1) 求证:无论为任何实数,抛物线与轴总有两个交点; (2) 若A、B是抛物线上的两个不同点,求抛物线的解析式和的值; (3) 若反比例函数的图象与(2)中的抛物线在第一象限内的交点的横坐标为,且满足2<<3,求k的取值范围.
如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形. 图中的△ABC是一个格点三角形. (1)请你在图中画出格点△A1BC1, 使得△A1BC1∽△ABC,且△A1BC1与△ABC的相似比为2:1; (2)写出A1、C1两点的坐标.