如图,一次函数 y = kx + 2 的图象与反比例函数 y = m x ( x < 0 ) 的图象在第二象限交于点 P ,过点 P 作 PA ⊥ x 轴于点 A ,一次函数的图象分别交 x 、 y 轴于点 C 、 B , S ΔOBC = 1 , OA = OC
(1)求点 B 的坐标;
(2)求一次函数与反比例函数的表达式;
(3)根据图象直接写出不等式 kx + 2 > m x 的解集.
如图,把长方形ABCD的两角折叠,折痕为EF、HG,使HD与BF在同一直线上,已知长方形的两组对边分别平行,试说明两条折痕也相互平行.
如图,在Rt△ABC中,∠ACB=90°,点D是 AB边的中点,AB=10.将△ACD沿着CD折叠,CA的所对应的线段CP恰好与AB垂直,连接PD.试求BC的长度.
如图,△ABC是等腰三角形,AB=AC, (1)把△ABC沿底边BC折叠,得到△DBC,则四边形ABDC是什么四边形,为什么? (2)把△ABC沿腰AB折叠,得到△AEB,对于四边形CAEB,(1)中结论成立吗?
(1)点(0,3)关于y=x对称的点的坐标; (2)求直线l1:y=﹣3x+3关于y=x对称的直线l2的解析式; (3)直线l1与x、y轴的交点为A、B,直线l2与y、x轴的交点为A′、B′,则△AOB与△A′OB′重合部分的面积.
如图所示,矩形AOBC在直角坐标系中,O为原点,A在x轴上,B在y轴上,直线AB的函数关系式为,M是OB上的一点,若将梯形AMBC沿AM折叠,点B恰好落在x轴上的点B′处,C的对应点为C′. (1)求出B′点和M点的坐标; (2)求直线A C′的函数关系式; (3)设一动点P从A点出发,以每秒1个单位速度沿射线AB方向运动,过P作PQ⊥AB,交射线AM于Q; ①求运动t秒时,Q点的坐标;(用含t的代数式表示) ②以Q为圆心,以PQ的长为半径作圆,当t为何值时,⊙Q与y轴相切?