如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=kx(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.
(1)求函数y=kx的表达式,并直接写出E、F两点的坐标;
(2)求ΔAEF的面积.
如图,AB是⊙O的直径,直线EF切⊙O于点C, AD⊥EF于点D. (1)求证:AC平分∠BAD; (2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.(结果保留)
已知:的两边AB、AD的长是关于的方程的两个实数根. (1)当为何值时,是菱形?求出这时菱形的边长; (2)若AB=2,那么的周长是多少?
如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知点B坐标为(4,0). (1)求抛物线的解析式; (2)判断△ABC的形状,说出△ABC外接圆的圆心位置,并求出圆心的坐标.
如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E. (1)求证:BD=BE; (2)若ÐDBC=30°,CD=4,求四边形ABED的面积.
如图,已知是⊙的直径,弦,垂足为点,点是上一点,且. 试判断的形状,并说明你的理由.