如图, 一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形. (1)一个3×2的矩形用不同的方式分割后, 小正方形的个数可以是 ; 一个5×2的矩形用不同的方式分割后, 小正方形的个数可以是 ; (2)一个n×2的矩形用不同的方式分割后,小正方形的个数最少是____________________.(直接填写结果).
如图,在平面直角坐标系中,直线l与x轴相交于点M,与y轴相交于点N,Rt△MON的外心为点A(,﹣2),反比例函数y=(x>0)的图象过点A. (1)求直线l的解析式; (2)在函数y=(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P.若△ONP的面积是△OBC面积的3倍,求点P的坐标.
如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE. (1)求证:BE=CE; (2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.
某校为了解该校九年级学生对蓝球、乒乓球、羽毛球、足球四种球类运动项目的喜爱情况,对九年级部分学生进行了随机抽样调查,每名学生必须且只能选择最喜爱的一项运动项目上,将调查结果统计后绘制成如图两幅不完整的统计图,请根据图中的信息,回答下列问题: (1)这次被抽查的学生有 60 人;请补全条形统计图; (2)在统计图2中,“乒乓球”对应扇形的圆心角是 144 度; (3)若该校九年级共有480名学生,估计该校九年级最喜欢足球的学生约有 48 人.
解不等式≥,并把它的解集在数轴上表示出来.
对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1. (1)分别判断函数和是不是有界函数?若是有界函数,求其边界值; (2)若函数的边界值是2,且这个函数的最大值也是2,求的取值范围; (3)将函数的图象向下平移个单位,得到的函数的边界值是,当在什么范围时,满足?