(1)计算 (1﹣)2+. (2)解方程组
如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点T(m,n)表示火炬位置,火炬从离北京路10米处的M点开始传递,到离北京路1000米的N点时传递活动结束.迎圣火临时指挥部设在坐标原点O(北京路与奥运路的十字路口),OATB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000平方米(路线宽度均不计).(1)求图中反比例函数的关系式(不需写出自变量的取值范围);(2)当鲜花方阵的周长为500米时,确定此时火炬的位置(用坐标表示);(3)设t=m﹣n,用含t的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时,确定此时火炬的位置(用坐标表示).
如图,P1(x1,y1),P2(x2,y2),…Pn(xn,yn)在函数y=(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…△PnAn﹣1An都是等腰直角三角形,斜边OA1、A1A2、A2A3,…An﹣1An都在x轴上(1)求P1的坐标;(2)求y1+y2+y3+…y10的值.
如图,将一块直角三角形纸板的直角顶点放在C(1,)处,两直角边分别与x,y轴平行,纸板的另两个顶点A,B恰好是直线y=kx+与双曲线y=(m>0)的交点.(1)求m和k的值;(2)设双曲线y=(m>0)在A,B之间的部分为L,让一把三角尺的直角顶点P在L上滑动,两直角边始终与坐标轴平行,且与线段AB交于M,N两点,请探究是否存在点P使得MN=AB,写出你的探究过程和结论.
九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.第二学习小组发现:如图(2),点P是反比例函数上任意一点,过点P作x轴、y轴的垂线,垂足为M、N,则矩形OMPN的面积为定值|k|.请利用上述结论解决下列问题:(1)如图(3),四边形ABCD、与四边形CEFG都是正方形点E在CD上,正方形ABCD边长为2,则S△BDF= 2 .(2)如图(4),点P、Q在反比例函数图象上,PQ过点O,过P作y轴的平行线交x轴于点H,过Q作x轴的平行线交PH于点G,若S△PQG=8,则S△POH= 2 ,k= ﹣4 .(3)如图(5)点P、Q是第一象限的点,且在反比例函数图象上,过点P作x轴垂线,过点Q作y轴垂线,垂足分别是M、N,试判断直线PQ与直线MN的位置关系,并说明理由.
类比二次函数的图象的平移,我们对反比例函数的图象作类似的变换:(1)将y=的图象向右平移1个单位,所得图象的函数表达式为 _________ ,再向上平移1个单位,所得图象的函数表达式为 _________ ;(2)函数y=的图象可由y=的图象向 _________ 平移 _________ 个单位得到;y=的图象可由哪个反比例函数的图象经过怎样的变换得到;(3)一般地,函数y=(ab≠0,且a≠b)的图象可由哪个反比例函数的图象经过怎样的变换得到?