某市热线网站就“民众是否支持加大修建城市地下排水设施的资金投入”进行投票.按照该市暴雨前后两个时间收集了50份有效票,所得统计结果如下表:已知工作人员从所有投票中任取一个,取到“不支持投入”的投票的概率为.(1)求列联表中的数据x,y,A,B的值;(2)绘制条形统计图,通过图形判断本次暴雨是否影响到民众对加大修建城市地下排水设施的投入的态度?(3)能够有多大把握认为暴雨与该市民众是否赞成加修建城市地下排水设施的投入有关?附:
设各项均为正数的数列 a n 的前 n 项和为 S n ,已知 2 a 2 = a 1 + a 3 ,数列 S n 是公差为 d 的等差数列. ①求数列 a n 的通项公式(用 n , d 表示) ②设 c 为实数,对满足 m + n = 3 k 且 m ≠ n 的任意正整数 m , n , k ,不等式 S m + S n > c S k 都成立。求证: c 的最大值为 9 2
在平面直角坐标系 x O y 中,如图,已知椭圆 x 2 9 + y 2 5 = 1 的左右顶点为 A , B ,右顶点为 F ,设过点 T ( t , m ) 的直线 T A , T B 与椭圆分别交于点 M ( x 1 , y 1 ) , N ( x 2 , y 2 ) ,其中 m > 0 , y 1 > 0 , y 2 < 0
①设动点 P 满足 P F 2 - P B 2 = 4 ,求点 P 的轨迹 ②设 x 1 = 2 , x 2 = 1 3 ,求点 T 的坐标 ③设 t = 9 ,求证:直线 M N 必过 x 轴上的一定点(其坐标与 m 无关)
某兴趣小组测量电视塔 A E 的高度 H (单位 m ),如示意图,垂直放置的标杆 B C 高度 h = 4 m ,仰角 ∠ A B E = α , ∠ A D E = β .
(1)该小组已经测得一组 α , β 的值, tan α = 1 . 24 , tan β = 1 . 20 ,请据此算出H的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离 d (单位 m ),使 α 与 β 之差较大,可以提高测量精确度,若电视塔实际高度为125 m ,问 d 为多少时, α - β 最大.
如图,四棱锥 P - A B C D 中, P D ⊥ 平面 A B C D , P D = D C = B C = 1 , A b = 2 , A B ∥ D C , ∠ B C D = 90 ° .
(1)求证: P C ⊥ B C
(2)求点 A 到平面 P B C 的距离.
在平面直角坐标系 x O y 中,点 A - 1 , - 2 , B 2 , 3 , C - 2 , - 1
(1)求以线段 A B 、 A C 为邻边的平行四边形两条对角线的长 (2)设实数 t 满足 A B ⇀ - t A C ⇀ · O C ⇀ = 0 ,求 t 的值