在平面直角坐标系 x O y 中,点 A - 1 , - 2 , B 2 , 3 , C - 2 , - 1
(1)求以线段 A B 、 A C 为邻边的平行四边形两条对角线的长 (2)设实数 t 满足 A B ⇀ - t A C ⇀ · O C ⇀ = 0 ,求 t 的值
今年年初,我国多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁。私家车的尾气排放也是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力。为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
(1)完成被调查人员的频率分布直方图; (2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.
如图,四棱锥中,底面是直角梯形,平面,,,分别为,的中点,. (1)求证:; (2)求二面角的余弦值.
已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若x∈时,不等式f(1+xlog2a)≤f(x-2)恒成立,求实数a的取值范围.
已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-. (1)求证:f(x)为奇函数; (2)求证:f(x)在R上是减函数; (3)求f(x)在[-3,6]上的最大值与最小值.
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2. (1)求证:f(x)是周期函数; (2)当x∈[2,4]时,求f(x)的解析式; (3)计算f(0)+f(1)+f(2)+…+f(2014)的值.