如图,四棱锥 P - A B C D 中, P D ⊥ 平面 A B C D , P D = D C = B C = 1 , A b = 2 , A B ∥ D C , ∠ B C D = 90 ° .
(1)求证: P C ⊥ B C
(2)求点 A 到平面 P B C 的距离.
(本小题满分12分)如图,为矩形,为梯形,平面平面,,,. (Ⅰ)若为中点,求证:平面; (Ⅱ)求平面与所成锐二面角的余弦值.
((本题15分) 已知点(1,)是函数且)的图象上一点,等比数列的前n项和为,数列的首项为c,且前n项和满足-=+(n2) (1)求数列和的通项公式; (2)若数列{前n项和为,问>的最小正整数n是多少?
((本题15分) 已知函数, (Ⅰ)若曲线在点处的切线斜率为3,且时有极值,求函数的解析式; (Ⅱ)在(Ⅰ)的条件下,求函数在上的最大值和最小值。
((本题14分) 已知:A、B、C是的内角,分别是其对边长,向量,, (Ⅰ)求角A的大小; (Ⅱ)若求的长.
(本题14分) 设函数 (1)求函数的最小正周期和单调递增区间; (2)当时,的最大值为2,求的值.