(本小题满分12分)已知抛物线的焦点为,过点作一条直线与抛物线交于,两点.(Ⅰ)求以点为圆心,且与直线相切的圆的方程;(Ⅱ)从中取出三个量,使其构成等比数列,并予以证明.
如图,在长方体 A B C D - A 1 B 1 C 1 D 1 中, A A 1 = 1 , A B = A D = 2 , E , F ,分别是 A B , B C 的中点.证明 A 1 , C 1 , F , E 四点共面,并求直线 C D 1 与平面 A 1 C 1 F E 所成的角的大小.
已知关于 x 的不等式 x + a < b 的解集为 x 2 < x < 4
(Ⅰ)求实数 a , b 的值; (Ⅱ)求 a t + 12 + b t 的最大值.
选修4-4:坐标系与参数方程 在直角坐标版权法 x O y 吕,直线 l 的参数方程为 x = 3 + 1 2 t y = 3 2 t ( t 为参数),以原点为极点, x 轴的正半轴为极轴建立极坐标系, ⊙ C 的极坐标方程为 ρ = 3 sin θ . (Ⅰ)写出 ⊙ C 的直角坐标方程; (Ⅱ) P 为直线 l 上一动点,当 P 到圆心 C 的距离最小时,求点 P 的坐标.
如图, A B 切 ⊙ O 于点 B ,直线 A O 交 ⊙ O 于 D , E 两点, B C ⊥ D E 垂足为 C .
(Ⅰ)证明: ∠ C B D = ∠ D B A
(Ⅱ)若 A D = 3 D C , B C = 2 ,求 ⊙ O 的直径.
设 f n x = x + x 2 + … + x n - 1 , n ∈ N , n ≥ 2 .
(Ⅰ)求 f ` n 2 ; (Ⅱ)证明: f n x 在 0 , 2 3 内有且仅有一个零点(记为 a n ),且 0 < a n - 1 2 < 1 3 2 3 n .