(本小题满分10分)如图所示,一次函数()的图象与反比例函数()的图象交于M,N两点.(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x的范围.
(年浙江宁波14分)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1,O2分别在CD,AB上,半径分别是O1C,O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼接到矩形AEFD下面,并利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中的圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=(),圆的半径为,①求关于的函数解析式;②当取何值时圆的半径最大?最大半径是多少?并说明四种方案中,哪一个圆形桌面的半径最大?
(年浙江宁波12分)课本作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=,试画出示意图,并求出所有可能的值;(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.
(年山西省11分)课程学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.数学思考:(1)求∠CB′F的度数;(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE与∠GCB′的大小关系,并说明理由;解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;第二步:沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;第三步:设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q的形状,并证明你的结论.
(2014年山东青岛10分)数学问题:计算(其中m,n都是正整数,且m≥2,n≥1). 探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究. 探究一:计算. 第1次分割,把正方形的面积二等分,其中阴影部分的面积为; 第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为; 第3次分割,把上次分割图中空白部分的面积继续二等分,…; … 第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为,最后空白部分的面积是. 根据第n次分割图可得等式:. 探究二:计算. 第1次分割,把正方形的面积三等分,其中阴影部分的面积为; 第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为; 第3次分割,把上次分割图中空白部分的面积继续三等分,…; … 第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为,最后空白部分的面积是. 根据第n次分割图可得等式:, 两边同除以2,得. 探究三:计算. (仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程) 解决问题:计算. (只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空) 根据第n次分割图可得等式: , 所以,= . 拓广应用:计算.
(2014年江西省9分)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A、B重合),点F在BC边上(不与点B、C重合). 第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G; 第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H; 依此操作下去… (1)图2中的△EFD是经过两次操作后得到的,其形状为 ,求此时线段EF的长; (2)若经过三次操作可得到四边形EFGH. ①请判断四边形EFGH的形状为 ,此时AE与BF的数量关系是 ; ②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.