记公差不为0的等差数列的前项和为,,成等比数列.(1)求数列的通项公式及;(2)若,n=1,2,3,…,问是否存在实数,使得数列为单调递减数列?若存在,请求出的取值范围;若不存在,请说明理由.
在某次综合素质测试中,共设有40个考室,每个考室30名考生.在考试结束后,为调查其测试前的培训辅导情况与测试成绩的相关性,抽取每个考室中座位号为05的考生,统计了他们的成绩,得到如图所示的频率分布直方图.(Ⅰ)在这个调查采样中,用到的是什么抽样方法?(Ⅱ)写出这40个考生成绩的众数、中位数(只写结果);(Ⅲ)若从成绩在的考生中任抽取2人,求成绩在的考生至少有一人的概率.
已知等差数列的前项和为,且.(I)求数列的通项公式;(II)设等比数列,若,求数列的前项和.
在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数,).(Ⅰ)化曲线的极坐标方程为直角坐标方程;(Ⅱ)若直线经过点,求直线被曲线截得的线段的长.
已知矩阵,绕原点逆时针旋转的变换所对应的矩阵为.(Ⅰ)求矩阵;(Ⅱ)若曲线:在矩阵对应变换作用下得到曲线,求曲线的方程.
已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)当时,在曲线上是否存在两点,使得曲线在两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的取值范围;若不存在,请说明理由;(Ⅲ)若在区间存在最大值,试构造一个函数,使得同时满足以下三个条件:①定义域,且;②当时,;③在中使取得最大值时的值,从小到大组成等差数列.(只要写出函数即可)