已知数列的首项,且对任意都有(其中为常数).(1)若数列为等差数列,且,求的通项公式.(2)若数列是等比数列,且,从数列中任意取出相邻的三项,均能按某种顺序排成等差数列,求的前项和成立的的取值的集合.
已知. (1)若三点共线,求实数的值; (2)证明:对任意实数,恒有 成立
(本小题满分10分)已知为正数,求证:
(本小题满分10分)已知,不等式的解集为 (1)求 (2)当时,证明:
设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:与轴的交点为B,且经过F1,F2点. (Ⅰ)求椭圆C1的方程; (Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值.
已知函数在点处取得极小值-4,使其导函数的的取值范围为(1,3) (Ⅰ)求的解析式及的极大值; (Ⅱ)当时,求的最大值。