(本小题满分13分)某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出 名员工从事第三产业,调整后他们平均每人每年创造利润为万元,剩下的员工平均每人每年创造的利润可以提高.(Ⅰ)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(Ⅱ)在(Ⅰ)的条件下,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则的取值范围是多少?
如图,在四棱锥中,底面是正方形,侧面底面,,分别为,中点,. (Ⅰ)求证:∥平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.
某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段,,,,(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望.
在△中,角,,的对边分别是,,,且,,△的面积为.(Ⅰ)求边的长;(Ⅱ)求的值.
已知函数.(1)对任意实数,恒有,证明;(2)若是方程的两个实根,是锐角三角形的两个内角,求证:。
已知函数为奇函数,且相邻两对称轴间的距离为.(1)当时,求的单调递减区间; (2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.