(本小题满分13分)设函数.(Ⅰ)若函数在区间上是单调递增函数,求实数的取值范围;(Ⅱ)若函数有两个极值点,且,求证:.
(本小题满分12分)用半径为R的圆形铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,求:扇形的.圆心角多大时,容器的容积最大?并求出此时容器的最大容积.
(本小题满分12分) 现有三人被派去各自独立地解答一道数学问题,已知三人各自解答出的问题概率分别为,,,且他们是否解答出问题互不影响. (Ⅰ)求恰有二人解答出问题的概率; (Ⅱ)求“问题被解答”与“问题未被解答”的概率.
(本小题满分10分) 已知函数f (x)=(x2-1)3+1,求f (x)的极值.
设等比数列的前n项和为,等差数列的前n项和为,已知 (其中为常数),,。(1)求常数的值及数列,的通项公式和。(2)设,设数列的前n项和为,若不等式对于任意的恒成立,求实数m的最大值与整数k的最小值。(3)试比较与2的大小关系,并给出证明。
为测量某塔的高度,同学甲先在观察点C测得塔顶A在南偏西方向上,仰角为,然后沿南偏东方向前进30米到B点后,测得塔顶A仰角为,试根据同学甲测得的数据计算此塔AD的高度。(其中点A为塔顶,点D为塔顶A在地面上的射影,点B、C、D均在地面上,不考虑同学甲的身高)