已知数列{an}是等差数列,数列{bn}是等比数列,且对任意的n∈N*,都有a1b1+a2b2+a3b3+···+anbn=n·2n+3.(1)若{bn}的首项为4,公比为2,求数列{an+bn}的前n项和Sn;(2)若a1=8.①求数列{an}与{bn}的通项公式;②试探究:数列{bn}中是否存在某一项,它可以表示为该数列中其它r(r∈N,r≥2)项的和?若存在,请求出该项;若不存在,请说明理由.
(本题13分)设数列的前项和为,若对任意,都有. (1)求数列的首项; (2)求证:数列是等比数列,并求数列的通项公式; (3)数列满足,问是否存在,使得恒成立?如果存在,求出的值,如果不存在,说明理由.
(本题9分)数列的前n项和,. (1)求数列的通项公式; (2)若,,设数列的前项和为,求数列{}中的最小项.
(本题8分)某村计划建造一个室内面积为800的矩形蔬菜温室。在温室内,沿左.右两侧与后侧内墙各保留1宽的通道,沿前侧内墙保留3宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?
(本题9分)在中,、、分别是角A、B、C的对边,且 (1)求角B的大小; (2)若,求的面积.
(本题9分)已知,当时,;时, (1)求a、b的值; (2)若的解集为R,求 c的取值范围。