如图所示,已知AC ⊥平面CDE, BD ∥AC , 为等边三角形,F为ED边上的中点,且,(Ⅰ)求证:CF∥面ABE;(Ⅱ)求证:面ABE ⊥平面BDE;(Ⅲ)求该几何体ABECD的体积。
已知数列,定义其平均数是,. (Ⅰ)若数列的平均数,求; (Ⅱ)若数列是首项为1,公比为2的等比数列,其平均数为, 求证:.
如图,四棱锥的底面为矩形,且,,, (Ⅰ)求证:平面平面; (Ⅱ)求直线与平面所成角的正弦值
如图,在中,点在边上,,,. (Ⅰ)求的值; (Ⅱ)求的面积.
设,圆:与轴正半轴的交点为,与曲线的交点为,直线与轴的交点为. (1)用表示和; (2)若数列满足:. ①求常数的值使数列成等比数列; ②比较与的大小.
设,函数. (1)讨论函数的单调区间和极值; (2)已知和是函数的两个不同的零点,求的值并证明:.