设(1)求,并求数列的通项公式. (2)已知函数在上为减函数,设数列的前的和为,求证:
已知过点的直线与抛物线交于两点,为坐标原点. (1)若以为直径的圆经过原点,求直线的方程; (2)若线段的中垂线交轴于点,求面积的取值范围.
已知命题:方程有两个不等的负实根,命题:方程无实根.若为真,为假,求实数的取值范围.
过点作直线与双曲线相交于两点、,且为线段的中点,求这条直线的方程.
已知椭圆的左右焦点坐标分别是,离心率,直线与椭圆交于不同的两点. (1)求椭圆的方程; (2)求弦的长度.
甲、乙两人参加普法知识竞赛,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人各抽一道(不重复). (1)甲抽到选择题,乙抽到判断题的概率是多少? (2)甲、乙二人中至少有一人抽到选择题的概率是多少?