如图,在四棱锥中,底面为直角梯形,,垂直于底面,分别为的中点. (1)求证:; (2)求点到平面的距离.
如图,在七面体中,四边形是边长为2的正方形,平面,平面,且,,与交于点,点在上,且(1)求证:平面;(2)求七面体的体积.
已知:定义在R上的函数,对于任意实数a, b都满足,且,网当. (Ⅰ)求的值;(Ⅱ)证明在上是增函数;(Ⅲ)求不等式的解集.
已知.(1)证明为奇函数;(2)求使>0成立的的集合.
已知函数是定义在上的偶函数,当时,.(1)求的函数解析式,并用分段函数的形式给出;(2)作出函数的简图;(3)写出函数的单调区间及最值.
铁路运输托运行李,从甲地到乙地,规定每张客票托运费计算方法为:行李质量不超过,按元计算;超过而不超过时,其超过部分按元计算,超过时,其超过部分按元计算.设行李质量为,托运费用为元.(Ⅰ)写出函数的解析式;(Ⅱ)若行李质量为,托运费用为多少?