如图,在平面直角坐标系中,已知点A(0,12),B(16,0),动点P从点A开始在线段AO上以每秒1个单位的速度向点O移动,同时点Q从点B开始在BA上以每秒2个单位的速度向点A移动,设点P、Q移动的时间为t秒。⑴求直线AB的解析式;⑵求t为何值时,△APQ与△AOB相似?⑶当t为何值时,△APQ的面积为个平方单位?⑷当t为何值时,△APQ的面积最大,最大值是多少?
在“3.15”消费者权益日的活动中,对甲、乙两家商场售后服务的满意度进行了抽查. 如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为1分、2分、3分、4分.(1)请问:甲商场的用户满意度分数的众数为 ;乙商场的用户满意度分数的众数为 .(2)分别求出甲、乙两商场的用户满意度分数的平均值(计算结果精确到0.01).(3)请你根据所学的统计知识,判断哪家商场的用户满意度较高,并简要说明理由.
已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。求证:(1)△ADF≌△CBE;(2)EB∥DF。
中央电视台举办的第14届“蓝色经典·天之蓝”杯青年歌手大奖赛,由部队文工团的A(海政)、B(空政)、C(武警)组成种子队,由部队文工团的D(解放军)和地方文工团的E(江苏)、F(上海)组成非种子队.现从种子队A、B、C与非种子队D、E、F中各抽取一个队进行首场比赛.(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A、B、C、D、E、F表示);(2)求首场比赛出场的两个队都是部队文工团的概率P.
(1)解方程:; (2)解不等式组:
计算:(1) (2)化简并求值:,其中.