已知公差不为0的等差数列的前n项和为,,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前n项和.
,则称为与 在上的一个“分界函数”.如,则称一个“分界函数”。 (1)求证:是和在上的一个“分界函数”; (2)若和在上一定存在一个“分界函数”,试确定实数的取值范围.
己知函数 (1)若是的极值点,求在上的最大值; (2)在(1)的条件下,是否存在实数b,使得函数的图象与函数的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
如图所示,和是边长为2的正三角形,且平面平面,平面,. (1)证明:; (2)求三棱锥的体积.
设函数 (1)求函数的最小值; (2)若恒成立,求实数的取值范围.
已知数列满足,其中. (1)设,求证:数列是等差数列,并求出的通项公式; (2)设,数列的前项和为,是否存在正整数,使得对于N*恒成立,若存在,求出的最小值,若不存在,请说明理由.