如图,直线与轴交于点,与轴交于点.点在轴上,且,在此平面上,存在点,使得四边形恰好为平行四边形.(1)求点的坐标;(2)求所有满足条件的点坐标.
如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是点E,F,连接EF,交AD于点G,求证:AD⊥EF.
已知:如图,在△ABC中,∠C=90°,AC=BC=4,点M是边AC上一动点(与点A、C不重合),点N在边CB的延长线上,且AM=BN,连接MN交边AB于点P. (1)求证:MP=NP; (2)若设AM=x,BP=y,求y与x之间的函数关系式,并写出它的定义域; (3)当△BPN是等腰三角形时,求AM的长.
如图,在△ABC中,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F,且DE=DF.求证: (1)△BDE≌△CDF; (2)AB=AC.
在△ABC中,AB=AC,AE是BC边上的高,∠B的平分线与AE相交于点D, 求证:点D在∠ACB的平分线上.
如图,AD∥BC,BD平分∠ABC.求证:AB=AD.