某市推出电脑上网包月制,每月收取费用 y (元 ) 与上网时间 x (小时)的函数关系如图所示,其中 BA 是线段,且 BA / / x 轴, AC 是射线.
(1)当 x ⩾ 30 ,求 y 与 x 之间的函数关系式;
(2)若小李4月份上网20小时,他应付多少元的上网费用?
(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?
如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B. (1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形; (2)填空: ①当DP=cm时,四边形AOBD是菱形; ②当DP=cm时,四边形AOBP是正方形.
请将式子:化简后,再选择一个合适的x的值代入求值.
(1)计算:(-2011)0+()-1+|-2|-2cos60°; (2)解方程:(2x-1)2=x(3x+2)-7.
如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B. (1)求抛物线的解析式; (2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标; (3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE. (1)求证:PD是⊙O的切线; (2)若⊙O的半径为4,PC=8,设OC=x,PD2=y. ①求y关于x的函数关系式; ②当x=时,求tanB的值.